File: target_delay_unittest.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (223 lines) | stat: -rw-r--r-- 7,607 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h"
#include "webrtc/modules/audio_coding/main/interface/audio_coding_module.h"
#include "webrtc/modules/audio_coding/main/test/utility.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/system_wrappers/interface/sleep.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/gtest_disable.h"

namespace webrtc {

class TargetDelayTest : public ::testing::Test {
 protected:
  TargetDelayTest() : acm_(AudioCodingModule::Create(0)) {}

  ~TargetDelayTest() {}

  void SetUp() {
    EXPECT_TRUE(acm_.get() != NULL);

    CodecInst codec;
    ASSERT_EQ(0, AudioCodingModule::Codec("L16", &codec, kSampleRateHz, 1));
    ASSERT_EQ(0, acm_->InitializeReceiver());
    ASSERT_EQ(0, acm_->RegisterReceiveCodec(codec));

    rtp_info_.header.payloadType = codec.pltype;
    rtp_info_.header.timestamp = 0;
    rtp_info_.header.ssrc = 0x12345678;
    rtp_info_.header.markerBit = false;
    rtp_info_.header.sequenceNumber = 0;
    rtp_info_.type.Audio.channel = 1;
    rtp_info_.type.Audio.isCNG = false;
    rtp_info_.frameType = kAudioFrameSpeech;

    int16_t audio[kFrameSizeSamples];
    const int kRange = 0x7FF;  // 2047, easy for masking.
    for (size_t n = 0; n < kFrameSizeSamples; ++n)
      audio[n] = (rand() & kRange) - kRange / 2;
    WebRtcPcm16b_Encode(audio, kFrameSizeSamples, payload_);
  }

  void OutOfRangeInput() {
    EXPECT_EQ(-1, SetMinimumDelay(-1));
    EXPECT_EQ(-1, SetMinimumDelay(10001));
  }

  void NoTargetDelayBufferSizeChanges() {
    for (int n = 0; n < 30; ++n)  // Run enough iterations.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    Run(false);  // Run with jitter.
    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_GT(jittery_optimal_delay, clean_optimal_delay);
    int required_delay = RequiredDelay();
    EXPECT_GT(required_delay, 0);
    EXPECT_NEAR(required_delay, jittery_optimal_delay, 1);
  }

  void WithTargetDelayBufferNotChanging() {
    // A target delay that is one packet larger than jitter.
    const int kTargetDelayMs = (kInterarrivalJitterPacket + 1) *
        kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs));
    for (int n = 0; n < 30; ++n)  // Run enough iterations to fill the buffer.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetDelayMs, clean_optimal_delay);
    Run(false);  // Run with jitter.
    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(jittery_optimal_delay, clean_optimal_delay);
  }

  void RequiredDelayAtCorrectRange() {
    for (int n = 0; n < 30; ++n)  // Run clean and store delay.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();

    // A relatively large delay.
    const int kTargetDelayMs = (kInterarrivalJitterPacket + 10) *
        kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetDelayMs));
    for (int n = 0; n < 300; ++n)  // Run enough iterations to fill the buffer.
      Run(true);
    Run(false);  // Run with jitter.

    int jittery_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetDelayMs, jittery_optimal_delay);

    int required_delay = RequiredDelay();

    // Checking |required_delay| is in correct range.
    EXPECT_GT(required_delay, 0);
    EXPECT_GT(jittery_optimal_delay, required_delay);
    EXPECT_GT(required_delay, clean_optimal_delay);

    // A tighter check for the value of |required_delay|.
    // The jitter forces a delay of
    // |kInterarrivalJitterPacket * kNum10msPerFrame * 10| milliseconds. So we
    // expect |required_delay| be close to that.
    EXPECT_NEAR(kInterarrivalJitterPacket * kNum10msPerFrame * 10,
                required_delay, 1);
  }

  void TargetDelayBufferMinMax() {
    const int kTargetMinDelayMs = kNum10msPerFrame * 10;
    ASSERT_EQ(0, SetMinimumDelay(kTargetMinDelayMs));
    for (int m = 0; m < 30; ++m)  // Run enough iterations to fill the buffer.
      Run(true);
    int clean_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetMinDelayMs, clean_optimal_delay);

    const int kTargetMaxDelayMs = 2 * (kNum10msPerFrame * 10);
    ASSERT_EQ(0, SetMaximumDelay(kTargetMaxDelayMs));
    for (int n = 0; n < 30; ++n)  // Run enough iterations to fill the buffer.
      Run(false);

    int capped_optimal_delay = GetCurrentOptimalDelayMs();
    EXPECT_EQ(kTargetMaxDelayMs, capped_optimal_delay);
  }

 private:
  static const int kSampleRateHz = 16000;
  static const int kNum10msPerFrame = 2;
  static const size_t kFrameSizeSamples = 320;  // 20 ms @ 16 kHz.
  // payload-len = frame-samples * 2 bytes/sample.
  static const int kPayloadLenBytes = 320 * 2;
  // Inter-arrival time in number of packets in a jittery channel. One is no
  // jitter.
  static const int kInterarrivalJitterPacket = 2;

  void Push() {
    rtp_info_.header.timestamp += kFrameSizeSamples;
    rtp_info_.header.sequenceNumber++;
    ASSERT_EQ(0, acm_->IncomingPacket(payload_, kFrameSizeSamples * 2,
                                      rtp_info_));
  }

  // Pull audio equivalent to the amount of audio in one RTP packet.
  void Pull() {
    AudioFrame frame;
    for (int k = 0; k < kNum10msPerFrame; ++k) {  // Pull one frame.
      ASSERT_EQ(0, acm_->PlayoutData10Ms(-1, &frame));
      // Had to use ASSERT_TRUE, ASSERT_EQ generated error.
      ASSERT_TRUE(kSampleRateHz == frame.sample_rate_hz_);
      ASSERT_EQ(1, frame.num_channels_);
      ASSERT_TRUE(kSampleRateHz / 100 == frame.samples_per_channel_);
    }
  }

  void Run(bool clean) {
    for (int n = 0; n < 10; ++n) {
      for (int m = 0; m < 5; ++m) {
        Push();
        Pull();
      }

      if (!clean) {
        for (int m = 0; m < 10; ++m) {  // Long enough to trigger delay change.
          Push();
          for (int n = 0; n < kInterarrivalJitterPacket; ++n)
            Pull();
        }
      }
    }
  }

  int SetMinimumDelay(int delay_ms) {
    return acm_->SetMinimumPlayoutDelay(delay_ms);
  }

  int SetMaximumDelay(int delay_ms) {
    return acm_->SetMaximumPlayoutDelay(delay_ms);
  }

  int GetCurrentOptimalDelayMs() {
    ACMNetworkStatistics stats;
    acm_->NetworkStatistics(&stats);
    return stats.preferredBufferSize;
  }

  int RequiredDelay() {
    return acm_->LeastRequiredDelayMs();
  }

  scoped_ptr<AudioCodingModule> acm_;
  WebRtcRTPHeader rtp_info_;
  uint8_t payload_[kPayloadLenBytes];
};

TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(OutOfRangeInput)) {
  OutOfRangeInput();
}

TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(NoTargetDelayBufferSizeChanges)) {
  NoTargetDelayBufferSizeChanges();
}

TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(WithTargetDelayBufferNotChanging)) {
  WithTargetDelayBufferNotChanging();
}

TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(RequiredDelayAtCorrectRange)) {
  RequiredDelayAtCorrectRange();
}

TEST_F(TargetDelayTest, DISABLED_ON_ANDROID(TargetDelayBufferMinMax)) {
  TargetDelayBufferMinMax();
}

}  // namespace webrtc