1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/expand.h"
#include <assert.h>
#include <string.h> // memset
#include <algorithm> // min, max
#include <limits> // numeric_limits<T>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_coding/neteq/background_noise.h"
#include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
#include "webrtc/modules/audio_coding/neteq/random_vector.h"
#include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
namespace webrtc {
void Expand::Reset() {
first_expand_ = true;
consecutive_expands_ = 0;
max_lag_ = 0;
for (size_t ix = 0; ix < num_channels_; ++ix) {
channel_parameters_[ix].expand_vector0.Clear();
channel_parameters_[ix].expand_vector1.Clear();
}
}
int Expand::Process(AudioMultiVector* output) {
int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30];
int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
static const int kTempDataSize = 3600;
int16_t temp_data[kTempDataSize]; // TODO(hlundin) Remove this.
int16_t* voiced_vector_storage = temp_data;
int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;
int fs_mult = fs_hz_ / 8000;
if (first_expand_) {
// Perform initial setup if this is the first expansion since last reset.
AnalyzeSignal(random_vector);
first_expand_ = false;
} else {
// This is not the first expansion, parameters are already estimated.
// Extract a noise segment.
int16_t rand_length = max_lag_;
// This only applies to SWB where length could be larger than 256.
assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
GenerateRandomVector(2, rand_length, random_vector);
}
// Generate signal.
UpdateLagIndex();
// Voiced part.
// Generate a weighted vector with the current lag.
size_t expansion_vector_length = max_lag_ + overlap_length_;
size_t current_lag = expand_lags_[current_lag_index_];
// Copy lag+overlap data.
size_t expansion_vector_position = expansion_vector_length - current_lag -
overlap_length_;
size_t temp_length = current_lag + overlap_length_;
for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
ChannelParameters& parameters = channel_parameters_[channel_ix];
if (current_lag_index_ == 0) {
// Use only expand_vector0.
assert(expansion_vector_position + temp_length <=
parameters.expand_vector0.Size());
memcpy(voiced_vector_storage,
¶meters.expand_vector0[expansion_vector_position],
sizeof(int16_t) * temp_length);
} else if (current_lag_index_ == 1) {
// Mix 3/4 of expand_vector0 with 1/4 of expand_vector1.
WebRtcSpl_ScaleAndAddVectorsWithRound(
¶meters.expand_vector0[expansion_vector_position], 3,
¶meters.expand_vector1[expansion_vector_position], 1, 2,
voiced_vector_storage, static_cast<int>(temp_length));
} else if (current_lag_index_ == 2) {
// Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
assert(expansion_vector_position + temp_length <=
parameters.expand_vector0.Size());
assert(expansion_vector_position + temp_length <=
parameters.expand_vector1.Size());
WebRtcSpl_ScaleAndAddVectorsWithRound(
¶meters.expand_vector0[expansion_vector_position], 1,
¶meters.expand_vector1[expansion_vector_position], 1, 1,
voiced_vector_storage, static_cast<int>(temp_length));
}
// Get tapering window parameters. Values are in Q15.
int16_t muting_window, muting_window_increment;
int16_t unmuting_window, unmuting_window_increment;
if (fs_hz_ == 8000) {
muting_window = DspHelper::kMuteFactorStart8kHz;
muting_window_increment = DspHelper::kMuteFactorIncrement8kHz;
unmuting_window = DspHelper::kUnmuteFactorStart8kHz;
unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz;
} else if (fs_hz_ == 16000) {
muting_window = DspHelper::kMuteFactorStart16kHz;
muting_window_increment = DspHelper::kMuteFactorIncrement16kHz;
unmuting_window = DspHelper::kUnmuteFactorStart16kHz;
unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz;
} else if (fs_hz_ == 32000) {
muting_window = DspHelper::kMuteFactorStart32kHz;
muting_window_increment = DspHelper::kMuteFactorIncrement32kHz;
unmuting_window = DspHelper::kUnmuteFactorStart32kHz;
unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz;
} else { // fs_ == 48000
muting_window = DspHelper::kMuteFactorStart48kHz;
muting_window_increment = DspHelper::kMuteFactorIncrement48kHz;
unmuting_window = DspHelper::kUnmuteFactorStart48kHz;
unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz;
}
// Smooth the expanded if it has not been muted to a low amplitude and
// |current_voice_mix_factor| is larger than 0.5.
if ((parameters.mute_factor > 819) &&
(parameters.current_voice_mix_factor > 8192)) {
size_t start_ix = sync_buffer_->Size() - overlap_length_;
for (size_t i = 0; i < overlap_length_; i++) {
// Do overlap add between new vector and overlap.
(*sync_buffer_)[channel_ix][start_ix + i] =
(((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) +
(((parameters.mute_factor * voiced_vector_storage[i]) >> 14) *
unmuting_window) + 16384) >> 15;
muting_window += muting_window_increment;
unmuting_window += unmuting_window_increment;
}
} else if (parameters.mute_factor == 0) {
// The expanded signal will consist of only comfort noise if
// mute_factor = 0. Set the output length to 15 ms for best noise
// production.
// TODO(hlundin): This has been disabled since the length of
// parameters.expand_vector0 and parameters.expand_vector1 no longer
// match with expand_lags_, causing invalid reads and writes. Is it a good
// idea to enable this again, and solve the vector size problem?
// max_lag_ = fs_mult * 120;
// expand_lags_[0] = fs_mult * 120;
// expand_lags_[1] = fs_mult * 120;
// expand_lags_[2] = fs_mult * 120;
}
// Unvoiced part.
// Filter |scaled_random_vector| through |ar_filter_|.
memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state,
sizeof(int16_t) * kUnvoicedLpcOrder);
int32_t add_constant = 0;
if (parameters.ar_gain_scale > 0) {
add_constant = 1 << (parameters.ar_gain_scale - 1);
}
WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
parameters.ar_gain, add_constant,
parameters.ar_gain_scale,
static_cast<int>(current_lag));
WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
parameters.ar_filter, kUnvoicedLpcOrder + 1,
static_cast<int>(current_lag));
memcpy(parameters.ar_filter_state,
&(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
sizeof(int16_t) * kUnvoicedLpcOrder);
// Combine voiced and unvoiced contributions.
// Set a suitable cross-fading slope.
// For lag =
// <= 31 * fs_mult => go from 1 to 0 in about 8 ms;
// (>= 31 .. <= 63) * fs_mult => go from 1 to 0 in about 16 ms;
// >= 64 * fs_mult => go from 1 to 0 in about 32 ms.
// temp_shift = getbits(max_lag_) - 5.
int temp_shift = (31 - WebRtcSpl_NormW32(max_lag_)) - 5;
int16_t mix_factor_increment = 256 >> temp_shift;
if (stop_muting_) {
mix_factor_increment = 0;
}
// Create combined signal by shifting in more and more of unvoiced part.
temp_shift = 8 - temp_shift; // = getbits(mix_factor_increment).
size_t temp_lenght = (parameters.current_voice_mix_factor -
parameters.voice_mix_factor) >> temp_shift;
temp_lenght = std::min(temp_lenght, current_lag);
DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_lenght,
¶meters.current_voice_mix_factor,
mix_factor_increment, temp_data);
// End of cross-fading period was reached before end of expanded signal
// path. Mix the rest with a fixed mixing factor.
if (temp_lenght < current_lag) {
if (mix_factor_increment != 0) {
parameters.current_voice_mix_factor = parameters.voice_mix_factor;
}
int temp_scale = 16384 - parameters.current_voice_mix_factor;
WebRtcSpl_ScaleAndAddVectorsWithRound(
voiced_vector + temp_lenght, parameters.current_voice_mix_factor,
unvoiced_vector + temp_lenght, temp_scale, 14,
temp_data + temp_lenght, static_cast<int>(current_lag - temp_lenght));
}
// Select muting slope depending on how many consecutive expands we have
// done.
if (consecutive_expands_ == 3) {
// Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms.
// mute_slope = 0.0010 / fs_mult in Q20.
parameters.mute_slope = std::max(parameters.mute_slope,
static_cast<int16_t>(1049 / fs_mult));
}
if (consecutive_expands_ == 7) {
// Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms.
// mute_slope = 0.0020 / fs_mult in Q20.
parameters.mute_slope = std::max(parameters.mute_slope,
static_cast<int16_t>(2097 / fs_mult));
}
// Mute segment according to slope value.
if ((consecutive_expands_ != 0) || !parameters.onset) {
// Mute to the previous level, then continue with the muting.
WebRtcSpl_AffineTransformVector(temp_data, temp_data,
parameters.mute_factor, 8192,
14, static_cast<int>(current_lag));
if (!stop_muting_) {
DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);
// Shift by 6 to go from Q20 to Q14.
// TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong.
// Legacy.
int16_t gain = static_cast<int16_t>(16384 -
(((current_lag * parameters.mute_slope) + 8192) >> 6));
gain = ((gain * parameters.mute_factor) + 8192) >> 14;
// Guard against getting stuck with very small (but sometimes audible)
// gain.
if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) {
parameters.mute_factor = 0;
} else {
parameters.mute_factor = gain;
}
}
}
// Background noise part.
GenerateBackgroundNoise(random_vector,
channel_ix,
channel_parameters_[channel_ix].mute_slope,
TooManyExpands(),
current_lag,
unvoiced_array_memory);
// Add background noise to the combined voiced-unvoiced signal.
for (size_t i = 0; i < current_lag; i++) {
temp_data[i] = temp_data[i] + noise_vector[i];
}
if (channel_ix == 0) {
output->AssertSize(current_lag);
} else {
assert(output->Size() == current_lag);
}
memcpy(&(*output)[channel_ix][0], temp_data,
sizeof(temp_data[0]) * current_lag);
}
// Increase call number and cap it.
consecutive_expands_ = consecutive_expands_ >= kMaxConsecutiveExpands ?
kMaxConsecutiveExpands : consecutive_expands_ + 1;
return 0;
}
void Expand::SetParametersForNormalAfterExpand() {
current_lag_index_ = 0;
lag_index_direction_ = 0;
stop_muting_ = true; // Do not mute signal any more.
}
void Expand::SetParametersForMergeAfterExpand() {
current_lag_index_ = -1; /* out of the 3 possible ones */
lag_index_direction_ = 1; /* make sure we get the "optimal" lag */
stop_muting_ = true;
}
void Expand::InitializeForAnExpandPeriod() {
lag_index_direction_ = 1;
current_lag_index_ = -1;
stop_muting_ = false;
random_vector_->set_seed_increment(1);
consecutive_expands_ = 0;
for (size_t ix = 0; ix < num_channels_; ++ix) {
channel_parameters_[ix].current_voice_mix_factor = 16384; // 1.0 in Q14.
channel_parameters_[ix].mute_factor = 16384; // 1.0 in Q14.
// Start with 0 gain for background noise.
background_noise_->SetMuteFactor(ix, 0);
}
}
bool Expand::TooManyExpands() {
return consecutive_expands_ >= kMaxConsecutiveExpands;
}
void Expand::AnalyzeSignal(int16_t* random_vector) {
int32_t auto_correlation[kUnvoicedLpcOrder + 1];
int16_t reflection_coeff[kUnvoicedLpcOrder];
int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
int best_correlation_index[kNumCorrelationCandidates];
int16_t best_correlation[kNumCorrelationCandidates];
int16_t best_distortion_index[kNumCorrelationCandidates];
int16_t best_distortion[kNumCorrelationCandidates];
int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
int32_t best_distortion_w32[kNumCorrelationCandidates];
static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
int fs_mult = fs_hz_ / 8000;
// Pre-calculate common multiplications with fs_mult.
int fs_mult_4 = fs_mult * 4;
int fs_mult_20 = fs_mult * 20;
int fs_mult_120 = fs_mult * 120;
int fs_mult_dist_len = fs_mult * kDistortionLength;
int fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
const size_t signal_length = 256 * fs_mult;
const int16_t* audio_history =
&(*sync_buffer_)[0][sync_buffer_->Size() - signal_length];
// Initialize.
InitializeForAnExpandPeriod();
// Calculate correlation in downsampled domain (4 kHz sample rate).
int16_t correlation_scale;
int correlation_length = 51; // TODO(hlundin): Legacy bit-exactness.
// If it is decided to break bit-exactness |correlation_length| should be
// initialized to the return value of Correlation().
Correlation(audio_history, signal_length, correlation_vector,
&correlation_scale);
// Find peaks in correlation vector.
DspHelper::PeakDetection(correlation_vector, correlation_length,
kNumCorrelationCandidates, fs_mult,
best_correlation_index, best_correlation);
// Adjust peak locations; cross-correlation lags start at 2.5 ms
// (20 * fs_mult samples).
best_correlation_index[0] += fs_mult_20;
best_correlation_index[1] += fs_mult_20;
best_correlation_index[2] += fs_mult_20;
// Calculate distortion around the |kNumCorrelationCandidates| best lags.
int distortion_scale = 0;
for (int i = 0; i < kNumCorrelationCandidates; i++) {
int16_t min_index = std::max(fs_mult_20,
best_correlation_index[i] - fs_mult_4);
int16_t max_index = std::min(fs_mult_120 - 1,
best_correlation_index[i] + fs_mult_4);
best_distortion_index[i] = DspHelper::MinDistortion(
&(audio_history[signal_length - fs_mult_dist_len]), min_index,
max_index, fs_mult_dist_len, &best_distortion_w32[i]);
distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]),
distortion_scale);
}
// Shift the distortion values to fit in 16 bits.
WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates,
best_distortion_w32, distortion_scale);
// Find the maximizing index |i| of the cost function
// f[i] = best_correlation[i] / best_distortion[i].
int32_t best_ratio = std::numeric_limits<int32_t>::min();
int best_index = -1;
for (int i = 0; i < kNumCorrelationCandidates; ++i) {
int32_t ratio;
if (best_distortion[i] > 0) {
ratio = (best_correlation[i] << 16) / best_distortion[i];
} else if (best_correlation[i] == 0) {
ratio = 0; // No correlation set result to zero.
} else {
ratio = std::numeric_limits<int32_t>::max(); // Denominator is zero.
}
if (ratio > best_ratio) {
best_index = i;
best_ratio = ratio;
}
}
int distortion_lag = best_distortion_index[best_index];
int correlation_lag = best_correlation_index[best_index];
max_lag_ = std::max(distortion_lag, correlation_lag);
// Calculate the exact best correlation in the range between
// |correlation_lag| and |distortion_lag|.
correlation_length = distortion_lag + 10;
correlation_length = std::min(correlation_length, fs_mult_120);
correlation_length = std::max(correlation_length, 60 * fs_mult);
int start_index = std::min(distortion_lag, correlation_lag);
int correlation_lags = WEBRTC_SPL_ABS_W16((distortion_lag-correlation_lag))
+ 1;
assert(correlation_lags <= 99 * fs_mult + 1); // Cannot be larger.
for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
ChannelParameters& parameters = channel_parameters_[channel_ix];
// Calculate suitable scaling.
int16_t signal_max = WebRtcSpl_MaxAbsValueW16(
&audio_history[signal_length - correlation_length - start_index
- correlation_lags],
correlation_length + start_index + correlation_lags - 1);
correlation_scale = ((31 - WebRtcSpl_NormW32(signal_max * signal_max))
+ (31 - WebRtcSpl_NormW32(correlation_length))) - 31;
correlation_scale = std::max(static_cast<int16_t>(0), correlation_scale);
// Calculate the correlation, store in |correlation_vector2|.
WebRtcSpl_CrossCorrelation(
correlation_vector2,
&(audio_history[signal_length - correlation_length]),
&(audio_history[signal_length - correlation_length - start_index]),
correlation_length, correlation_lags, correlation_scale, -1);
// Find maximizing index.
best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
int32_t max_correlation = correlation_vector2[best_index];
// Compensate index with start offset.
best_index = best_index + start_index;
// Calculate energies.
int32_t energy1 = WebRtcSpl_DotProductWithScale(
&(audio_history[signal_length - correlation_length]),
&(audio_history[signal_length - correlation_length]),
correlation_length, correlation_scale);
int32_t energy2 = WebRtcSpl_DotProductWithScale(
&(audio_history[signal_length - correlation_length - best_index]),
&(audio_history[signal_length - correlation_length - best_index]),
correlation_length, correlation_scale);
// Calculate the correlation coefficient between the two portions of the
// signal.
int16_t corr_coefficient;
if ((energy1 > 0) && (energy2 > 0)) {
int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0);
int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
// Make sure total scaling is even (to simplify scale factor after sqrt).
if ((energy1_scale + energy2_scale) & 1) {
// If sum is odd, add 1 to make it even.
energy1_scale += 1;
}
int16_t scaled_energy1 = energy1 >> energy1_scale;
int16_t scaled_energy2 = energy2 >> energy2_scale;
int16_t sqrt_energy_product = WebRtcSpl_SqrtFloor(
scaled_energy1 * scaled_energy2);
// Calculate max_correlation / sqrt(energy1 * energy2) in Q14.
int cc_shift = 14 - (energy1_scale + energy2_scale) / 2;
max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift);
corr_coefficient = WebRtcSpl_DivW32W16(max_correlation,
sqrt_energy_product);
corr_coefficient = std::min(static_cast<int16_t>(16384),
corr_coefficient); // Cap at 1.0 in Q14.
} else {
corr_coefficient = 0;
}
// Extract the two vectors expand_vector0 and expand_vector1 from
// |audio_history|.
int16_t expansion_length = static_cast<int16_t>(max_lag_ + overlap_length_);
const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
const int16_t* vector2 = vector1 - distortion_lag;
// Normalize the second vector to the same energy as the first.
energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length,
correlation_scale);
energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length,
correlation_scale);
// Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0,
// i.e., energy1 / energy1 is within 0.25 - 4.
int16_t amplitude_ratio;
if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) {
// Energy constraint fulfilled. Use both vectors and scale them
// accordingly.
int16_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
int16_t scaled_energy1 = scaled_energy2 - 13;
// Calculate scaled_energy1 / scaled_energy2 in Q13.
int32_t energy_ratio = WebRtcSpl_DivW32W16(
WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
energy2 >> scaled_energy2);
// Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
amplitude_ratio = WebRtcSpl_SqrtFloor(energy_ratio << 13);
// Copy the two vectors and give them the same energy.
parameters.expand_vector0.Clear();
parameters.expand_vector0.PushBack(vector1, expansion_length);
parameters.expand_vector1.Clear();
if (parameters.expand_vector1.Size() <
static_cast<size_t>(expansion_length)) {
parameters.expand_vector1.Extend(
expansion_length - parameters.expand_vector1.Size());
}
WebRtcSpl_AffineTransformVector(¶meters.expand_vector1[0],
const_cast<int16_t*>(vector2),
amplitude_ratio,
4096,
13,
expansion_length);
} else {
// Energy change constraint not fulfilled. Only use last vector.
parameters.expand_vector0.Clear();
parameters.expand_vector0.PushBack(vector1, expansion_length);
// Copy from expand_vector0 to expand_vector1.
parameters.expand_vector0.CopyTo(¶meters.expand_vector1);
// Set the energy_ratio since it is used by muting slope.
if ((energy1 / 4 < energy2) || (energy2 == 0)) {
amplitude_ratio = 4096; // 0.5 in Q13.
} else {
amplitude_ratio = 16384; // 2.0 in Q13.
}
}
// Set the 3 lag values.
int lag_difference = distortion_lag - correlation_lag;
if (lag_difference == 0) {
// |distortion_lag| and |correlation_lag| are equal.
expand_lags_[0] = distortion_lag;
expand_lags_[1] = distortion_lag;
expand_lags_[2] = distortion_lag;
} else {
// |distortion_lag| and |correlation_lag| are not equal; use different
// combinations of the two.
// First lag is |distortion_lag| only.
expand_lags_[0] = distortion_lag;
// Second lag is the average of the two.
expand_lags_[1] = (distortion_lag + correlation_lag) / 2;
// Third lag is the average again, but rounding towards |correlation_lag|.
if (lag_difference > 0) {
expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2;
} else {
expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2;
}
}
// Calculate the LPC and the gain of the filters.
// Calculate scale value needed for auto-correlation.
correlation_scale = WebRtcSpl_MaxAbsValueW16(
&(audio_history[signal_length - fs_mult_lpc_analysis_len]),
fs_mult_lpc_analysis_len);
correlation_scale = std::min(16 - WebRtcSpl_NormW32(correlation_scale), 0);
correlation_scale = std::max(correlation_scale * 2 + 7, 0);
// Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function.
size_t temp_index = signal_length - fs_mult_lpc_analysis_len -
kUnvoicedLpcOrder;
// Copy signal to temporary vector to be able to pad with leading zeros.
int16_t* temp_signal = new int16_t[fs_mult_lpc_analysis_len
+ kUnvoicedLpcOrder];
memset(temp_signal, 0,
sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder));
memcpy(&temp_signal[kUnvoicedLpcOrder],
&audio_history[temp_index + kUnvoicedLpcOrder],
sizeof(int16_t) * fs_mult_lpc_analysis_len);
WebRtcSpl_CrossCorrelation(auto_correlation,
&temp_signal[kUnvoicedLpcOrder],
&temp_signal[kUnvoicedLpcOrder],
fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1,
correlation_scale, -1);
delete [] temp_signal;
// Verify that variance is positive.
if (auto_correlation[0] > 0) {
// Estimate AR filter parameters using Levinson-Durbin algorithm;
// kUnvoicedLpcOrder + 1 filter coefficients.
int16_t stability = WebRtcSpl_LevinsonDurbin(auto_correlation,
parameters.ar_filter,
reflection_coeff,
kUnvoicedLpcOrder);
// Keep filter parameters only if filter is stable.
if (stability != 1) {
// Set first coefficient to 4096 (1.0 in Q12).
parameters.ar_filter[0] = 4096;
// Set remaining |kUnvoicedLpcOrder| coefficients to zero.
WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder);
}
}
if (channel_ix == 0) {
// Extract a noise segment.
int16_t noise_length;
if (distortion_lag < 40) {
noise_length = 2 * distortion_lag + 30;
} else {
noise_length = distortion_lag + 30;
}
if (noise_length <= RandomVector::kRandomTableSize) {
memcpy(random_vector, RandomVector::kRandomTable,
sizeof(int16_t) * noise_length);
} else {
// Only applies to SWB where length could be larger than
// |kRandomTableSize|.
memcpy(random_vector, RandomVector::kRandomTable,
sizeof(int16_t) * RandomVector::kRandomTableSize);
assert(noise_length <= kMaxSampleRate / 8000 * 120 + 30);
random_vector_->IncreaseSeedIncrement(2);
random_vector_->Generate(
noise_length - RandomVector::kRandomTableSize,
&random_vector[RandomVector::kRandomTableSize]);
}
}
// Set up state vector and calculate scale factor for unvoiced filtering.
memcpy(parameters.ar_filter_state,
&(audio_history[signal_length - kUnvoicedLpcOrder]),
sizeof(int16_t) * kUnvoicedLpcOrder);
memcpy(unvoiced_vector - kUnvoicedLpcOrder,
&(audio_history[signal_length - 128 - kUnvoicedLpcOrder]),
sizeof(int16_t) * kUnvoicedLpcOrder);
WebRtcSpl_FilterMAFastQ12(
const_cast<int16_t*>(&audio_history[signal_length - 128]),
unvoiced_vector, parameters.ar_filter, kUnvoicedLpcOrder + 1, 128);
int16_t unvoiced_prescale;
if (WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128) > 4000) {
unvoiced_prescale = 4;
} else {
unvoiced_prescale = 0;
}
int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale(unvoiced_vector,
unvoiced_vector,
128,
unvoiced_prescale);
// Normalize |unvoiced_energy| to 28 or 29 bits to preserve sqrt() accuracy.
int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3;
// Make sure we do an odd number of shifts since we already have 7 shifts
// from dividing with 128 earlier. This will make the total scale factor
// even, which is suitable for the sqrt.
unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1);
unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale);
int32_t unvoiced_gain = WebRtcSpl_SqrtFloor(unvoiced_energy);
parameters.ar_gain_scale = 13
+ (unvoiced_scale + 7 - unvoiced_prescale) / 2;
parameters.ar_gain = unvoiced_gain;
// Calculate voice_mix_factor from corr_coefficient.
// Let x = corr_coefficient. Then, we compute:
// if (x > 0.48)
// voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096;
// else
// voice_mix_factor = 0;
if (corr_coefficient > 7875) {
int16_t x1, x2, x3;
x1 = corr_coefficient; // |corr_coefficient| is in Q14.
x2 = (x1 * x1) >> 14; // Shift 14 to keep result in Q14.
x3 = (x1 * x2) >> 14;
static const int kCoefficients[4] = { -5179, 19931, -16422, 5776 };
int32_t temp_sum = kCoefficients[0] << 14;
temp_sum += kCoefficients[1] * x1;
temp_sum += kCoefficients[2] * x2;
temp_sum += kCoefficients[3] * x3;
parameters.voice_mix_factor = temp_sum / 4096;
parameters.voice_mix_factor = std::min(parameters.voice_mix_factor,
static_cast<int16_t>(16384));
parameters.voice_mix_factor = std::max(parameters.voice_mix_factor,
static_cast<int16_t>(0));
} else {
parameters.voice_mix_factor = 0;
}
// Calculate muting slope. Reuse value from earlier scaling of
// |expand_vector0| and |expand_vector1|.
int16_t slope = amplitude_ratio;
if (slope > 12288) {
// slope > 1.5.
// Calculate (1 - (1 / slope)) / distortion_lag =
// (slope - 1) / (distortion_lag * slope).
// |slope| is in Q13, so 1 corresponds to 8192. Shift up to Q25 before
// the division.
// Shift the denominator from Q13 to Q5 before the division. The result of
// the division will then be in Q20.
int16_t temp_ratio = WebRtcSpl_DivW32W16((slope - 8192) << 12,
(distortion_lag * slope) >> 8);
if (slope > 14746) {
// slope > 1.8.
// Divide by 2, with proper rounding.
parameters.mute_slope = (temp_ratio + 1) / 2;
} else {
// Divide by 8, with proper rounding.
parameters.mute_slope = (temp_ratio + 4) / 8;
}
parameters.onset = true;
} else {
// Calculate (1 - slope) / distortion_lag.
// Shift |slope| by 7 to Q20 before the division. The result is in Q20.
parameters.mute_slope = WebRtcSpl_DivW32W16((8192 - slope) << 7,
distortion_lag);
if (parameters.voice_mix_factor <= 13107) {
// Make sure the mute factor decreases from 1.0 to 0.9 in no more than
// 6.25 ms.
// mute_slope >= 0.005 / fs_mult in Q20.
parameters.mute_slope = std::max(static_cast<int16_t>(5243 / fs_mult),
parameters.mute_slope);
} else if (slope > 8028) {
parameters.mute_slope = 0;
}
parameters.onset = false;
}
}
}
int16_t Expand::Correlation(const int16_t* input, size_t input_length,
int16_t* output, int16_t* output_scale) const {
// Set parameters depending on sample rate.
const int16_t* filter_coefficients;
int16_t num_coefficients;
int16_t downsampling_factor;
if (fs_hz_ == 8000) {
num_coefficients = 3;
downsampling_factor = 2;
filter_coefficients = DspHelper::kDownsample8kHzTbl;
} else if (fs_hz_ == 16000) {
num_coefficients = 5;
downsampling_factor = 4;
filter_coefficients = DspHelper::kDownsample16kHzTbl;
} else if (fs_hz_ == 32000) {
num_coefficients = 7;
downsampling_factor = 8;
filter_coefficients = DspHelper::kDownsample32kHzTbl;
} else { // fs_hz_ == 48000.
num_coefficients = 7;
downsampling_factor = 12;
filter_coefficients = DspHelper::kDownsample48kHzTbl;
}
// Correlate from lag 10 to lag 60 in downsampled domain.
// (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
static const int kCorrelationStartLag = 10;
static const int kNumCorrelationLags = 54;
static const int kCorrelationLength = 60;
// Downsample to 4 kHz sample rate.
static const int kDownsampledLength = kCorrelationStartLag
+ kNumCorrelationLags + kCorrelationLength;
int16_t downsampled_input[kDownsampledLength];
static const int kFilterDelay = 0;
WebRtcSpl_DownsampleFast(
input + input_length - kDownsampledLength * downsampling_factor,
kDownsampledLength * downsampling_factor, downsampled_input,
kDownsampledLength, filter_coefficients, num_coefficients,
downsampling_factor, kFilterDelay);
// Normalize |downsampled_input| to using all 16 bits.
int16_t max_value = WebRtcSpl_MaxAbsValueW16(downsampled_input,
kDownsampledLength);
int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value);
WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength,
downsampled_input, norm_shift);
int32_t correlation[kNumCorrelationLags];
static const int kCorrelationShift = 6;
WebRtcSpl_CrossCorrelation(
correlation,
&downsampled_input[kDownsampledLength - kCorrelationLength],
&downsampled_input[kDownsampledLength - kCorrelationLength
- kCorrelationStartLag],
kCorrelationLength, kNumCorrelationLags, kCorrelationShift, -1);
// Normalize and move data from 32-bit to 16-bit vector.
int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
kNumCorrelationLags);
int16_t norm_shift2 = std::max(18 - WebRtcSpl_NormW32(max_correlation), 0);
WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation,
norm_shift2);
// Total scale factor (right shifts) of correlation value.
*output_scale = 2 * norm_shift + kCorrelationShift + norm_shift2;
return kNumCorrelationLags;
}
void Expand::UpdateLagIndex() {
current_lag_index_ = current_lag_index_ + lag_index_direction_;
// Change direction if needed.
if (current_lag_index_ <= 0) {
lag_index_direction_ = 1;
}
if (current_lag_index_ >= kNumLags - 1) {
lag_index_direction_ = -1;
}
}
Expand* ExpandFactory::Create(BackgroundNoise* background_noise,
SyncBuffer* sync_buffer,
RandomVector* random_vector,
int fs,
size_t num_channels) const {
return new Expand(background_noise, sync_buffer, random_vector, fs,
num_channels);
}
// TODO(turajs): This can be moved to BackgroundNoise class.
void Expand::GenerateBackgroundNoise(int16_t* random_vector,
size_t channel,
int16_t mute_slope,
bool too_many_expands,
size_t num_noise_samples,
int16_t* buffer) {
static const int kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
assert(static_cast<size_t>(kMaxSampleRate / 8000 * 125) >= num_noise_samples);
int16_t* noise_samples = &buffer[kNoiseLpcOrder];
if (background_noise_->initialized()) {
// Use background noise parameters.
memcpy(noise_samples - kNoiseLpcOrder,
background_noise_->FilterState(channel),
sizeof(int16_t) * kNoiseLpcOrder);
int dc_offset = 0;
if (background_noise_->ScaleShift(channel) > 1) {
dc_offset = 1 << (background_noise_->ScaleShift(channel) - 1);
}
// Scale random vector to correct energy level.
WebRtcSpl_AffineTransformVector(
scaled_random_vector, random_vector,
background_noise_->Scale(channel), dc_offset,
background_noise_->ScaleShift(channel),
static_cast<int>(num_noise_samples));
WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
background_noise_->Filter(channel),
kNoiseLpcOrder + 1,
static_cast<int>(num_noise_samples));
background_noise_->SetFilterState(
channel,
&(noise_samples[num_noise_samples - kNoiseLpcOrder]),
kNoiseLpcOrder);
// Unmute the background noise.
int16_t bgn_mute_factor = background_noise_->MuteFactor(channel);
NetEq::BackgroundNoiseMode bgn_mode = background_noise_->mode();
if (bgn_mode == NetEq::kBgnFade && too_many_expands &&
bgn_mute_factor > 0) {
// Fade BGN to zero.
// Calculate muting slope, approximately -2^18 / fs_hz.
int16_t mute_slope;
if (fs_hz_ == 8000) {
mute_slope = -32;
} else if (fs_hz_ == 16000) {
mute_slope = -16;
} else if (fs_hz_ == 32000) {
mute_slope = -8;
} else {
mute_slope = -5;
}
// Use UnmuteSignal function with negative slope.
// |bgn_mute_factor| is in Q14. |mute_slope| is in Q20.
DspHelper::UnmuteSignal(noise_samples,
num_noise_samples,
&bgn_mute_factor,
mute_slope,
noise_samples);
} else if (bgn_mute_factor < 16384) {
// If mode is kBgnOn, or if kBgnFade has started fading,
// use regular |mute_slope|.
if (!stop_muting_ && bgn_mode != NetEq::kBgnOff &&
!(bgn_mode == NetEq::kBgnFade && too_many_expands)) {
DspHelper::UnmuteSignal(noise_samples,
static_cast<int>(num_noise_samples),
&bgn_mute_factor,
mute_slope,
noise_samples);
} else {
// kBgnOn and stop muting, or
// kBgnOff (mute factor is always 0), or
// kBgnFade has reached 0.
WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
bgn_mute_factor, 8192, 14,
static_cast<int>(num_noise_samples));
}
}
// Update mute_factor in BackgroundNoise class.
background_noise_->SetMuteFactor(channel, bgn_mute_factor);
} else {
// BGN parameters have not been initialized; use zero noise.
memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
}
}
void Expand::GenerateRandomVector(int seed_increment,
size_t length,
int16_t* random_vector) {
// TODO(turajs): According to hlundin The loop should not be needed. Should be
// just as good to generate all of the vector in one call.
size_t samples_generated = 0;
const size_t kMaxRandSamples = RandomVector::kRandomTableSize;
while (samples_generated < length) {
size_t rand_length = std::min(length - samples_generated, kMaxRandSamples);
random_vector_->IncreaseSeedIncrement(seed_increment);
random_vector_->Generate(rand_length, &random_vector[samples_generated]);
samples_generated += rand_length;
}
}
} // namespace webrtc
|