1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Test to verify correct operation for externally created decoders.
#include <string>
#include <list>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/neteq/interface/neteq.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_external_decoder_pcm16b.h"
#include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h"
#include "webrtc/modules/audio_coding/neteq/tools/rtp_generator.h"
#include "webrtc/system_wrappers/interface/compile_assert.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/gtest_disable.h"
namespace webrtc {
using ::testing::_;
using ::testing::Return;
// This test encodes a few packets of PCM16b 32 kHz data and inserts it into two
// different NetEq instances. The first instance uses the internal version of
// the decoder object, while the second one uses an externally created decoder
// object (ExternalPcm16B wrapped in MockExternalPcm16B, both defined above).
// The test verifies that the output from both instances match.
class NetEqExternalDecoderTest : public ::testing::Test {
protected:
static const int kTimeStepMs = 10;
static const int kMaxBlockSize = 480; // 10 ms @ 48 kHz.
static const uint8_t kPayloadType = 95;
static const int kSampleRateHz = 32000;
NetEqExternalDecoderTest()
: sample_rate_hz_(kSampleRateHz),
samples_per_ms_(sample_rate_hz_ / 1000),
frame_size_ms_(10),
frame_size_samples_(frame_size_ms_ * samples_per_ms_),
output_size_samples_(frame_size_ms_ * samples_per_ms_),
external_decoder_(new MockExternalPcm16B),
rtp_generator_(new test::RtpGenerator(samples_per_ms_)),
payload_size_bytes_(0),
last_send_time_(0),
last_arrival_time_(0) {
config_.sample_rate_hz = sample_rate_hz_;
neteq_external_ = NetEq::Create(config_);
neteq_ = NetEq::Create(config_);
input_ = new int16_t[frame_size_samples_];
encoded_ = new uint8_t[2 * frame_size_samples_];
}
~NetEqExternalDecoderTest() {
delete neteq_external_;
delete neteq_;
// We will now delete the decoder ourselves, so expecting Die to be called.
EXPECT_CALL(*external_decoder_, Die()).Times(1);
delete [] input_;
delete [] encoded_;
}
virtual void SetUp() {
const std::string file_name =
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm");
input_file_.reset(new test::InputAudioFile(file_name));
assert(sample_rate_hz_ == 32000);
NetEqDecoder decoder = kDecoderPCM16Bswb32kHz;
EXPECT_CALL(*external_decoder_, Init());
// NetEq is not allowed to delete the external decoder (hence Times(0)).
EXPECT_CALL(*external_decoder_, Die()).Times(0);
ASSERT_EQ(NetEq::kOK,
neteq_external_->RegisterExternalDecoder(
external_decoder_.get(), decoder, kPayloadType));
ASSERT_EQ(NetEq::kOK,
neteq_->RegisterPayloadType(decoder, kPayloadType));
}
virtual void TearDown() {}
int GetNewPackets() {
if (!input_file_->Read(frame_size_samples_, input_)) {
return -1;
}
payload_size_bytes_ = WebRtcPcm16b_Encode(input_, frame_size_samples_,
encoded_);
if (frame_size_samples_ * 2 != payload_size_bytes_) {
return -1;
}
int next_send_time = rtp_generator_->GetRtpHeader(
kPayloadType, frame_size_samples_, &rtp_header_);
return next_send_time;
}
virtual void VerifyOutput(size_t num_samples) const {
for (size_t i = 0; i < num_samples; ++i) {
ASSERT_EQ(output_[i], output_external_[i]) <<
"Diff in sample " << i << ".";
}
}
virtual int GetArrivalTime(int send_time) {
int arrival_time = last_arrival_time_ + (send_time - last_send_time_);
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
virtual bool Lost() { return false; }
virtual void InsertPackets(int next_arrival_time) {
// Insert packet in regular instance.
ASSERT_EQ(
NetEq::kOK,
neteq_->InsertPacket(
rtp_header_, encoded_, payload_size_bytes_, next_arrival_time));
// Insert packet in external decoder instance.
EXPECT_CALL(*external_decoder_,
IncomingPacket(_,
payload_size_bytes_,
rtp_header_.header.sequenceNumber,
rtp_header_.header.timestamp,
next_arrival_time));
ASSERT_EQ(
NetEq::kOK,
neteq_external_->InsertPacket(
rtp_header_, encoded_, payload_size_bytes_, next_arrival_time));
}
virtual void GetOutputAudio() {
NetEqOutputType output_type;
// Get audio from regular instance.
int samples_per_channel;
int num_channels;
EXPECT_EQ(NetEq::kOK,
neteq_->GetAudio(kMaxBlockSize,
output_,
&samples_per_channel,
&num_channels,
&output_type));
EXPECT_EQ(1, num_channels);
EXPECT_EQ(output_size_samples_, samples_per_channel);
// Get audio from external decoder instance.
ASSERT_EQ(NetEq::kOK,
neteq_external_->GetAudio(kMaxBlockSize,
output_external_,
&samples_per_channel,
&num_channels,
&output_type));
EXPECT_EQ(1, num_channels);
EXPECT_EQ(output_size_samples_, samples_per_channel);
}
virtual int NumExpectedDecodeCalls(int num_loops) const { return num_loops; }
void RunTest(int num_loops) {
// Get next input packets (mono and multi-channel).
int next_send_time;
int next_arrival_time;
do {
next_send_time = GetNewPackets();
ASSERT_NE(-1, next_send_time);
next_arrival_time = GetArrivalTime(next_send_time);
} while (Lost()); // If lost, immediately read the next packet.
EXPECT_CALL(*external_decoder_, Decode(_, payload_size_bytes_, _, _))
.Times(NumExpectedDecodeCalls(num_loops));
int time_now = 0;
for (int k = 0; k < num_loops; ++k) {
while (time_now >= next_arrival_time) {
InsertPackets(next_arrival_time);
// Get next input packet.
do {
next_send_time = GetNewPackets();
ASSERT_NE(-1, next_send_time);
next_arrival_time = GetArrivalTime(next_send_time);
} while (Lost()); // If lost, immediately read the next packet.
}
GetOutputAudio();
std::ostringstream ss;
ss << "Lap number " << k << ".";
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
// Compare mono and multi-channel.
ASSERT_NO_FATAL_FAILURE(VerifyOutput(output_size_samples_));
time_now += kTimeStepMs;
}
}
NetEq::Config config_;
int sample_rate_hz_;
int samples_per_ms_;
const int frame_size_ms_;
size_t frame_size_samples_;
int output_size_samples_;
NetEq* neteq_external_;
NetEq* neteq_;
scoped_ptr<MockExternalPcm16B> external_decoder_;
scoped_ptr<test::RtpGenerator> rtp_generator_;
int16_t* input_;
uint8_t* encoded_;
int16_t output_[kMaxBlockSize];
int16_t output_external_[kMaxBlockSize];
WebRtcRTPHeader rtp_header_;
size_t payload_size_bytes_;
int last_send_time_;
int last_arrival_time_;
scoped_ptr<test::InputAudioFile> input_file_;
};
TEST_F(NetEqExternalDecoderTest, RunTest) {
RunTest(100); // Run 100 laps @ 10 ms each in the test loop.
}
class LargeTimestampJumpTest : public NetEqExternalDecoderTest {
protected:
enum TestStates {
kInitialPhase,
kNormalPhase,
kExpandPhase,
kFadedExpandPhase,
kRecovered
};
LargeTimestampJumpTest()
: NetEqExternalDecoderTest(), test_state_(kInitialPhase) {
sample_rate_hz_ = 8000;
samples_per_ms_ = sample_rate_hz_ / 1000;
frame_size_samples_ = frame_size_ms_ * samples_per_ms_;
output_size_samples_ = frame_size_ms_ * samples_per_ms_;
EXPECT_CALL(*external_decoder_, Die()).Times(1);
external_decoder_.reset(new MockExternalPcm16B);
}
void SetUp() OVERRIDE {
const std::string file_name =
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm");
input_file_.reset(new test::InputAudioFile(file_name));
assert(sample_rate_hz_ == 8000);
NetEqDecoder decoder = kDecoderPCM16B;
EXPECT_CALL(*external_decoder_, Init());
EXPECT_CALL(*external_decoder_, HasDecodePlc())
.WillRepeatedly(Return(false));
// NetEq is not allowed to delete the external decoder (hence Times(0)).
EXPECT_CALL(*external_decoder_, Die()).Times(0);
ASSERT_EQ(NetEq::kOK,
neteq_external_->RegisterExternalDecoder(
external_decoder_.get(), decoder, kPayloadType));
ASSERT_EQ(NetEq::kOK, neteq_->RegisterPayloadType(decoder, kPayloadType));
}
void InsertPackets(int next_arrival_time) OVERRIDE {
// Insert packet in external decoder instance.
EXPECT_CALL(*external_decoder_,
IncomingPacket(_,
payload_size_bytes_,
rtp_header_.header.sequenceNumber,
rtp_header_.header.timestamp,
next_arrival_time));
ASSERT_EQ(
NetEq::kOK,
neteq_external_->InsertPacket(
rtp_header_, encoded_, payload_size_bytes_, next_arrival_time));
}
void GetOutputAudio() OVERRIDE {
NetEqOutputType output_type;
int samples_per_channel;
int num_channels;
// Get audio from external decoder instance.
ASSERT_EQ(NetEq::kOK,
neteq_external_->GetAudio(kMaxBlockSize,
output_external_,
&samples_per_channel,
&num_channels,
&output_type));
EXPECT_EQ(1, num_channels);
EXPECT_EQ(output_size_samples_, samples_per_channel);
UpdateState(output_type);
}
virtual void UpdateState(NetEqOutputType output_type) {
switch (test_state_) {
case kInitialPhase: {
if (output_type == kOutputNormal) {
test_state_ = kNormalPhase;
}
break;
}
case kNormalPhase: {
if (output_type == kOutputPLC) {
test_state_ = kExpandPhase;
}
break;
}
case kExpandPhase: {
if (output_type == kOutputPLCtoCNG) {
test_state_ = kFadedExpandPhase;
} else if (output_type == kOutputNormal) {
test_state_ = kRecovered;
}
break;
}
case kFadedExpandPhase: {
if (output_type == kOutputNormal) {
test_state_ = kRecovered;
}
break;
}
case kRecovered: {
break;
}
}
}
void VerifyOutput(size_t num_samples) const OVERRIDE {
if (test_state_ == kExpandPhase || test_state_ == kFadedExpandPhase) {
// Don't verify the output in this phase of the test.
return;
}
for (size_t i = 0; i < num_samples; ++i) {
if (output_external_[i] != 0)
return;
}
EXPECT_TRUE(false)
<< "Expected at least one non-zero sample in each output block.";
}
int NumExpectedDecodeCalls(int num_loops) const OVERRIDE {
// Some packets at the end of the stream won't be decoded. When the jump in
// timestamp happens, NetEq will do Expand during one GetAudio call. In the
// next call it will decode the packet after the jump, but the net result is
// that the delay increased by 1 packet. In another call, a Pre-emptive
// Expand operation is performed, leading to delay increase by 1 packet. In
// total, the test will end with a 2-packet delay, which results in the 2
// last packets not being decoded.
return num_loops - 2;
}
TestStates test_state_;
};
TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRange) {
// Set the timestamp series to start at 2880, increase to 7200, then jump to
// 2869342376. The sequence numbers start at 42076 and increase by 1 for each
// packet, also when the timestamp jumps.
static const uint16_t kStartSeqeunceNumber = 42076;
static const uint32_t kStartTimestamp = 2880;
static const uint32_t kJumpFromTimestamp = 7200;
static const uint32_t kJumpToTimestamp = 2869342376;
COMPILE_ASSERT(kJumpFromTimestamp < kJumpToTimestamp,
timestamp_jump_should_not_result_in_wrap);
COMPILE_ASSERT(
static_cast<uint32_t>(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF,
jump_should_be_larger_than_half_range);
// Replace the default RTP generator with one that jumps in timestamp.
rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_,
kStartSeqeunceNumber,
kStartTimestamp,
kJumpFromTimestamp,
kJumpToTimestamp));
RunTest(130); // Run 130 laps @ 10 ms each in the test loop.
EXPECT_EQ(kRecovered, test_state_);
}
TEST_F(LargeTimestampJumpTest, JumpLongerThanHalfRangeAndWrap) {
// Make a jump larger than half the 32-bit timestamp range. Set the start
// timestamp such that the jump will result in a wrap around.
static const uint16_t kStartSeqeunceNumber = 42076;
// Set the jump length slightly larger than 2^31.
static const uint32_t kStartTimestamp = 3221223116;
static const uint32_t kJumpFromTimestamp = 3221223216;
static const uint32_t kJumpToTimestamp = 1073744278;
COMPILE_ASSERT(kJumpToTimestamp < kJumpFromTimestamp,
timestamp_jump_should_result_in_wrap);
COMPILE_ASSERT(
static_cast<uint32_t>(kJumpToTimestamp - kJumpFromTimestamp) > 0x7FFFFFFF,
jump_should_be_larger_than_half_range);
// Replace the default RTP generator with one that jumps in timestamp.
rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_,
kStartSeqeunceNumber,
kStartTimestamp,
kJumpFromTimestamp,
kJumpToTimestamp));
RunTest(130); // Run 130 laps @ 10 ms each in the test loop.
EXPECT_EQ(kRecovered, test_state_);
}
class ShortTimestampJumpTest : public LargeTimestampJumpTest {
protected:
void UpdateState(NetEqOutputType output_type) OVERRIDE {
switch (test_state_) {
case kInitialPhase: {
if (output_type == kOutputNormal) {
test_state_ = kNormalPhase;
}
break;
}
case kNormalPhase: {
if (output_type == kOutputPLC) {
test_state_ = kExpandPhase;
}
break;
}
case kExpandPhase: {
if (output_type == kOutputNormal) {
test_state_ = kRecovered;
}
break;
}
case kRecovered: {
break;
}
default: { FAIL(); }
}
}
int NumExpectedDecodeCalls(int num_loops) const OVERRIDE {
// Some packets won't be decoded because of the timestamp jump.
return num_loops - 2;
}
};
TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRange) {
// Make a jump shorter than half the 32-bit timestamp range. Set the start
// timestamp such that the jump will not result in a wrap around.
static const uint16_t kStartSeqeunceNumber = 42076;
// Set the jump length slightly smaller than 2^31.
static const uint32_t kStartTimestamp = 4711;
static const uint32_t kJumpFromTimestamp = 4811;
static const uint32_t kJumpToTimestamp = 2147483747;
COMPILE_ASSERT(kJumpFromTimestamp < kJumpToTimestamp,
timestamp_jump_should_not_result_in_wrap);
COMPILE_ASSERT(
static_cast<uint32_t>(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF,
jump_should_be_smaller_than_half_range);
// Replace the default RTP generator with one that jumps in timestamp.
rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_,
kStartSeqeunceNumber,
kStartTimestamp,
kJumpFromTimestamp,
kJumpToTimestamp));
RunTest(130); // Run 130 laps @ 10 ms each in the test loop.
EXPECT_EQ(kRecovered, test_state_);
}
TEST_F(ShortTimestampJumpTest, JumpShorterThanHalfRangeAndWrap) {
// Make a jump shorter than half the 32-bit timestamp range. Set the start
// timestamp such that the jump will result in a wrap around.
static const uint16_t kStartSeqeunceNumber = 42076;
// Set the jump length slightly smaller than 2^31.
static const uint32_t kStartTimestamp = 3221227827;
static const uint32_t kJumpFromTimestamp = 3221227927;
static const uint32_t kJumpToTimestamp = 1073739567;
COMPILE_ASSERT(kJumpToTimestamp < kJumpFromTimestamp,
timestamp_jump_should_result_in_wrap);
COMPILE_ASSERT(
static_cast<uint32_t>(kJumpToTimestamp - kJumpFromTimestamp) < 0x7FFFFFFF,
jump_should_be_smaller_than_half_range);
// Replace the default RTP generator with one that jumps in timestamp.
rtp_generator_.reset(new test::TimestampJumpRtpGenerator(samples_per_ms_,
kStartSeqeunceNumber,
kStartTimestamp,
kJumpFromTimestamp,
kJumpToTimestamp));
RunTest(130); // Run 130 laps @ 10 ms each in the test loop.
EXPECT_EQ(kRecovered, test_state_);
}
} // namespace webrtc
|