1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PayloadSplitter class.
#include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
#include <assert.h>
#include <utility> // pair
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
using ::testing::Return;
using ::testing::ReturnNull;
namespace webrtc {
static const int kRedPayloadType = 100;
static const size_t kPayloadLength = 10;
static const size_t kRedHeaderLength = 4; // 4 bytes RED header.
static const uint16_t kSequenceNumber = 0;
static const uint32_t kBaseTimestamp = 0x12345678;
// RED headers (according to RFC 2198):
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |F| block PT | timestamp offset | block length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Last RED header:
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |0| Block PT |
// +-+-+-+-+-+-+-+-+
// Creates a RED packet, with |num_payloads| payloads, with payload types given
// by the values in array |payload_types| (which must be of length
// |num_payloads|). Each redundant payload is |timestamp_offset| samples
// "behind" the the previous payload.
Packet* CreateRedPayload(size_t num_payloads,
uint8_t* payload_types,
int timestamp_offset) {
Packet* packet = new Packet;
packet->header.payloadType = kRedPayloadType;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = (kPayloadLength + 1) +
(num_payloads - 1) * (kPayloadLength + kRedHeaderLength);
uint8_t* payload = new uint8_t[packet->payload_length];
uint8_t* payload_ptr = payload;
for (size_t i = 0; i < num_payloads; ++i) {
// Write the RED headers.
if (i == num_payloads - 1) {
// Special case for last payload.
*payload_ptr = payload_types[i] & 0x7F; // F = 0;
++payload_ptr;
break;
}
*payload_ptr = payload_types[i] & 0x7F;
// Not the last block; set F = 1.
*payload_ptr |= 0x80;
++payload_ptr;
int this_offset = (num_payloads - i - 1) * timestamp_offset;
*payload_ptr = this_offset >> 6;
++payload_ptr;
assert(kPayloadLength <= 1023); // Max length described by 10 bits.
*payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
++payload_ptr;
*payload_ptr = kPayloadLength & 0xFF;
++payload_ptr;
}
for (size_t i = 0; i < num_payloads; ++i) {
// Write |i| to all bytes in each payload.
memset(payload_ptr, static_cast<int>(i), kPayloadLength);
payload_ptr += kPayloadLength;
}
packet->payload = payload;
return packet;
}
// A possible Opus packet that contains FEC is the following.
// The frame is 20 ms in duration.
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
// | Compressed frame 1 (N-2 bytes)... :
// : |
// | |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet* CreateOpusFecPacket(uint8_t payload_type, size_t payload_length,
uint8_t payload_value) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = payload_length;
uint8_t* payload = new uint8_t[packet->payload_length];
payload[0] = 0x08;
payload[1] = 0x40;
memset(&payload[2], payload_value, payload_length - 2);
packet->payload = payload;
return packet;
}
// Create a packet with all payload bytes set to |payload_value|.
Packet* CreatePacket(uint8_t payload_type, size_t payload_length,
uint8_t payload_value) {
Packet* packet = new Packet;
packet->header.payloadType = payload_type;
packet->header.timestamp = kBaseTimestamp;
packet->header.sequenceNumber = kSequenceNumber;
packet->payload_length = payload_length;
uint8_t* payload = new uint8_t[packet->payload_length];
memset(payload, payload_value, payload_length);
packet->payload = payload;
return packet;
}
// Checks that |packet| has the attributes given in the remaining parameters.
void VerifyPacket(const Packet* packet,
size_t payload_length,
uint8_t payload_type,
uint16_t sequence_number,
uint32_t timestamp,
uint8_t payload_value,
bool primary = true) {
EXPECT_EQ(payload_length, packet->payload_length);
EXPECT_EQ(payload_type, packet->header.payloadType);
EXPECT_EQ(sequence_number, packet->header.sequenceNumber);
EXPECT_EQ(timestamp, packet->header.timestamp);
EXPECT_EQ(primary, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (size_t i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
}
}
// Start of test definitions.
TEST(PayloadSplitter, CreateAndDestroy) {
PayloadSplitter* splitter = new PayloadSplitter;
delete splitter;
}
// Packet A is split into A1 and A2.
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
uint8_t payload_types[] = {0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet. The first in list should always be the primary payload.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp, 1, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Packets A and B are not split at all. Only the RED header in each packet is
// removed.
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
uint8_t payload_types[] = {0};
const int kTimestampOffset = 160;
// Create first packet, with a single RED payload.
Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create second packet, with a single RED payload.
packet = CreateRedPayload(1, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(2u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 0, true);
delete [] packet->payload;
delete packet;
}
// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
// attributes as follows:
//
// A1* A2 A3 B1* B2 B3
// Payload type 0 1 2 0 1 2
// Timestamp b b-o b-2o b+o b b-o
// Sequence number 0 0 0 1 1 1
//
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one.
const int kTimestampOffset = 160;
// Create first packet, with 3 RED payloads.
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
PacketList packet_list;
packet_list.push_back(packet);
// Create first packet, with 3 RED payloads.
packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually change timestamp and sequence number of second packet.
packet->header.timestamp += kTimestampOffset;
packet->header.sequenceNumber++;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list));
ASSERT_EQ(6u, packet_list.size());
// Check first packet, A1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber,
kBaseTimestamp, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet, A2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber,
kBaseTimestamp - kTimestampOffset, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet, A3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet, B1.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1,
kBaseTimestamp + kTimestampOffset, 2, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fifth packet, B2.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1,
kBaseTimestamp, 1, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check sixth packet, B3.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1,
kBaseTimestamp - kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
}
// Creates a list with 4 packets with these payload types:
// 0 = CNGnb
// 1 = PCMu
// 2 = DTMF (AVT)
// 3 = iLBC
// We expect the method CheckRedPayloads to discard the iLBC packet, since it
// is a non-CNG, non-DTMF payload of another type than the first speech payload
// found in the list (which is PCMu).
TEST(RedPayloadSplitter, CheckRedPayloads) {
PacketList packet_list;
for (uint8_t i = 0; i <= 3; ++i) {
// Create packet with payload type |i|, payload length 10 bytes, all 0.
Packet* packet = CreatePacket(i, 10, 0);
packet_list.push_back(packet);
}
// Use a real DecoderDatabase object here instead of a mock, since it is
// easier to just register the payload types and let the actual implementation
// do its job.
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, kDecoderCNGnb);
decoder_database.RegisterPayload(1, kDecoderPCMu);
decoder_database.RegisterPayload(2, kDecoderAVT);
decoder_database.RegisterPayload(3, kDecoderILBC);
PayloadSplitter splitter;
splitter.CheckRedPayloads(&packet_list, decoder_database);
ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet.
// Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
// list.
for (int i = 0; i <= 2; ++i) {
Packet* packet = packet_list.front();
VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
EXPECT_TRUE(packet_list.empty());
}
// Packet A is split into A1, A2 and A3. But the length parameter is off, so
// the last payloads should be discarded.
TEST(RedPayloadSplitter, WrongPayloadLength) {
uint8_t payload_types[] = {0, 0, 0};
const int kTimestampOffset = 160;
Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset);
// Manually tamper with the payload length of the packet.
// This is one byte too short for the second payload (out of three).
// We expect only the first payload to be returned.
packet->payload_length -= kPayloadLength + 1;
PacketList packet_list;
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kRedLengthMismatch,
splitter.SplitRed(&packet_list));
ASSERT_EQ(1u, packet_list.size());
// Check first packet.
packet = packet_list.front();
VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber,
kBaseTimestamp - 2 * kTimestampOffset, 0, false);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
}
// Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not
// get split.
TEST(AudioPayloadSplitter, NonSplittable) {
// Set up packets with different RTP payload types. The actual values do not
// matter, since we are mocking the decoder database anyway.
PacketList packet_list;
for (uint8_t i = 0; i < 6; ++i) {
// Let the payload type be |i|, and the payload value 10 * |i|.
packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
scoped_ptr<DecoderDatabase::DecoderInfo> info0(
new DecoderDatabase::DecoderInfo(kDecoderISAC, 16000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(info0.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info1(
new DecoderDatabase::DecoderInfo(kDecoderISACswb, 32000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(info1.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info2(
new DecoderDatabase::DecoderInfo(kDecoderRED, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(2))
.WillRepeatedly(Return(info2.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info3(
new DecoderDatabase::DecoderInfo(kDecoderAVT, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(3))
.WillRepeatedly(Return(info3.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info4(
new DecoderDatabase::DecoderInfo(kDecoderCNGnb, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(4))
.WillRepeatedly(Return(info4.get()));
scoped_ptr<DecoderDatabase::DecoderInfo> info5(
new DecoderDatabase::DecoderInfo(kDecoderArbitrary, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(5))
.WillRepeatedly(Return(info5.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(6u, packet_list.size());
// Check that all payloads are intact.
uint8_t payload_type = 0;
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber,
kBaseTimestamp, 10 * payload_type);
++payload_type;
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test unknown payload type.
TEST(AudioPayloadSplitter, UnknownPayloadType) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 4711; // Random number.
packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0));
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return NULL when asked for decoder info.
// This signals that the decoder database does not recognize the payload type.
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(ReturnNull());
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kUnknownPayloadType,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> {
protected:
virtual void SetUp() {
decoder_type_ = GetParam();
switch (decoder_type_) {
case kDecoderPCMu:
case kDecoderPCMa:
bytes_per_ms_ = 8;
samples_per_ms_ = 8;
break;
case kDecoderPCMu_2ch:
case kDecoderPCMa_2ch:
bytes_per_ms_ = 2 * 8;
samples_per_ms_ = 8;
break;
case kDecoderG722:
bytes_per_ms_ = 8;
samples_per_ms_ = 16;
break;
case kDecoderPCM16B:
bytes_per_ms_ = 16;
samples_per_ms_ = 8;
break;
case kDecoderPCM16Bwb:
bytes_per_ms_ = 32;
samples_per_ms_ = 16;
break;
case kDecoderPCM16Bswb32kHz:
bytes_per_ms_ = 64;
samples_per_ms_ = 32;
break;
case kDecoderPCM16Bswb48kHz:
bytes_per_ms_ = 96;
samples_per_ms_ = 48;
break;
case kDecoderPCM16B_2ch:
bytes_per_ms_ = 2 * 16;
samples_per_ms_ = 8;
break;
case kDecoderPCM16Bwb_2ch:
bytes_per_ms_ = 2 * 32;
samples_per_ms_ = 16;
break;
case kDecoderPCM16Bswb32kHz_2ch:
bytes_per_ms_ = 2 * 64;
samples_per_ms_ = 32;
break;
case kDecoderPCM16Bswb48kHz_2ch:
bytes_per_ms_ = 2 * 96;
samples_per_ms_ = 48;
break;
case kDecoderPCM16B_5ch:
bytes_per_ms_ = 5 * 16;
samples_per_ms_ = 8;
break;
default:
assert(false);
break;
}
}
size_t bytes_per_ms_;
int samples_per_ms_;
NetEqDecoder decoder_type_;
};
// Test splitting sample-based payloads.
TEST_P(SplitBySamplesTest, PayloadSizes) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) {
// The payload values are set to be the same as the payload_size, so that
// one can distinguish from which packet the split payloads come from.
size_t payload_size_bytes = payload_size_ms * bytes_per_ms_;
packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes,
payload_size_ms));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
// (Sample rate is set to 8000 Hz, but does not matter.)
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(decoder_type_, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
// The payloads are expected to be split as follows:
// 10 ms -> 10 ms
// 20 ms -> 20 ms
// 30 ms -> 30 ms
// 40 ms -> 20 + 20 ms
// 50 ms -> 25 + 25 ms
// 60 ms -> 30 + 30 ms
int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30};
int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60};
int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30};
size_t expected_num_packets =
sizeof(expected_size_ms) / sizeof(expected_size_ms[0]);
EXPECT_EQ(expected_num_packets, packet_list.size());
PacketList::iterator it = packet_list.begin();
int i = 0;
while (it != packet_list.end()) {
size_t length_bytes = expected_size_ms[i] * bytes_per_ms_;
uint32_t expected_timestamp = kBaseTimestamp +
expected_timestamp_offset_ms[i] * samples_per_ms_;
VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber,
expected_timestamp, expected_payload_value[i]);
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++i;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitBySamplesTest,
::testing::Values(kDecoderPCMu, kDecoderPCMa, kDecoderPCMu_2ch,
kDecoderPCMa_2ch, kDecoderG722, kDecoderPCM16B,
kDecoderPCM16Bwb, kDecoderPCM16Bswb32kHz,
kDecoderPCM16Bswb48kHz, kDecoderPCM16B_2ch,
kDecoderPCM16Bwb_2ch, kDecoderPCM16Bswb32kHz_2ch,
kDecoderPCM16Bswb48kHz_2ch, kDecoderPCM16B_5ch));
class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > {
protected:
virtual void SetUp() {
const std::pair<int, int> parameters = GetParam();
num_frames_ = parameters.first;
frame_length_ms_ = parameters.second;
frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50;
}
size_t num_frames_;
int frame_length_ms_;
size_t frame_length_bytes_;
};
// Test splitting sample-based payloads.
TEST_P(SplitIlbcTest, NumFrames) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
const int frame_length_samples = frame_length_ms_ * 8;
size_t payload_length_bytes = frame_length_bytes_ * num_frames_;
Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0);
// Fill payload with increasing integers {0, 1, 2, ...}.
for (size_t i = 0; i < packet->payload_length; ++i) {
packet->payload[i] = static_cast<uint8_t>(i);
}
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(num_frames_, packet_list.size());
PacketList::iterator it = packet_list.begin();
int frame_num = 0;
uint8_t payload_value = 0;
while (it != packet_list.end()) {
Packet* packet = (*it);
EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num,
packet->header.timestamp);
EXPECT_EQ(frame_length_bytes_, packet->payload_length);
EXPECT_EQ(kPayloadType, packet->header.payloadType);
EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber);
EXPECT_EQ(true, packet->primary);
ASSERT_FALSE(packet->payload == NULL);
for (size_t i = 0; i < packet->payload_length; ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
++payload_value;
}
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
++frame_num;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test 1 through 5 frames of 20 and 30 ms size.
// Also test the maximum number of frames in one packet for 20 and 30 ms.
// The maximum is defined by the largest payload length that can be uniquely
// resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms).
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitIlbcTest,
::testing::Values(std::pair<int, int>(1, 20), // 1 frame, 20 ms.
std::pair<int, int>(2, 20), // 2 frames, 20 ms.
std::pair<int, int>(3, 20), // And so on.
std::pair<int, int>(4, 20),
std::pair<int, int>(5, 20),
std::pair<int, int>(24, 20),
std::pair<int, int>(1, 30),
std::pair<int, int>(2, 30),
std::pair<int, int>(3, 30),
std::pair<int, int>(4, 30),
std::pair<int, int>(5, 30),
std::pair<int, int>(18, 30)));
// Test too large payload size.
TEST(IlbcPayloadSplitter, TooLargePayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 950;
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kTooLargePayload,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Payload not an integer number of frames.
TEST(IlbcPayloadSplitter, UnevenPayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 39; // Not an even number of frames.
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
scoped_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(kDecoderILBC, 8000, NULL, false));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kFrameSplitError,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete [] (*it)->payload;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
TEST(FecPayloadSplitter, MixedPayload) {
PacketList packet_list;
DecoderDatabase decoder_database;
decoder_database.RegisterPayload(0, kDecoderOpus);
decoder_database.RegisterPayload(1, kDecoderPCMu);
Packet* packet = CreateOpusFecPacket(0, 10, 0xFF);
packet_list.push_back(packet);
packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload.
packet_list.push_back(packet);
packet = CreatePacket(1, 10, 0); // Non-Opus payload.
packet_list.push_back(packet);
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kOK,
splitter.SplitFec(&packet_list, &decoder_database));
EXPECT_EQ(4u, packet_list.size());
// Check first packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload_length);
EXPECT_FALSE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check second packet.
packet = packet_list.front();
EXPECT_EQ(0, packet->header.payloadType);
EXPECT_EQ(kBaseTimestamp, packet->header.timestamp);
EXPECT_EQ(10U, packet->payload_length);
EXPECT_TRUE(packet->primary);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check third packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
packet_list.pop_front();
// Check fourth packet.
packet = packet_list.front();
VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true);
delete [] packet->payload;
delete packet;
}
} // namespace webrtc
|