1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include "webrtc/modules/audio_coding/neteq/tools/neteq_quality_test.h"
namespace webrtc {
namespace test {
const uint8_t kPayloadType = 95;
const int kOutputSizeMs = 10;
const int kInitSeed = 0x12345678;
const int kPacketLossTimeUnitMs = 10;
// Define switch for packet loss rate.
static bool ValidatePacketLossRate(const char* /* flag_name */, int32_t value) {
if (value >= 0 && value <= 100)
return true;
printf("Invalid packet loss percentile, should be between 0 and 100.");
return false;
}
DEFINE_int32(packet_loss_rate, 10, "Percentile of packet loss.");
static const bool packet_loss_rate_dummy =
RegisterFlagValidator(&FLAGS_packet_loss_rate, &ValidatePacketLossRate);
// Define switch for random loss mode.
static bool ValidateRandomLossMode(const char* /* flag_name */, int32_t value) {
if (value >= 0 && value <= 2)
return true;
printf("Invalid random packet loss mode, should be between 0 and 2.");
return false;
}
DEFINE_int32(random_loss_mode, 1,
"Random loss mode: 0--no loss, 1--uniform loss, 2--Gilbert Elliot loss.");
static const bool random_loss_mode_dummy =
RegisterFlagValidator(&FLAGS_random_loss_mode, &ValidateRandomLossMode);
// Define switch for burst length.
static bool ValidateBurstLength(const char* /* flag_name */, int32_t value) {
if (value >= kPacketLossTimeUnitMs)
return true;
printf("Invalid burst length, should be greater than %d ms.",
kPacketLossTimeUnitMs);
return false;
}
DEFINE_int32(burst_length, 30,
"Burst length in milliseconds, only valid for Gilbert Elliot loss.");
static const bool burst_length_dummy =
RegisterFlagValidator(&FLAGS_burst_length, &ValidateBurstLength);
// Define switch for drift factor.
static bool ValidateDriftFactor(const char* /* flag_name */, double value) {
if (value > -0.1)
return true;
printf("Invalid drift factor, should be greater than -0.1.");
return false;
}
DEFINE_double(drift_factor, 0.0, "Time drift factor.");
static const bool drift_factor_dummy =
RegisterFlagValidator(&FLAGS_drift_factor, &ValidateDriftFactor);
// ProbTrans00Solver() is to calculate the transition probability from no-loss
// state to itself in a modified Gilbert Elliot packet loss model. The result is
// to achieve the target packet loss rate |loss_rate|, when a packet is not
// lost only if all |units| drawings within the duration of the packet result in
// no-loss.
static double ProbTrans00Solver(int units, double loss_rate,
double prob_trans_10) {
if (units == 1)
return prob_trans_10 / (1.0f - loss_rate) - prob_trans_10;
// 0 == prob_trans_00 ^ (units - 1) + (1 - loss_rate) / prob_trans_10 *
// prob_trans_00 - (1 - loss_rate) * (1 + 1 / prob_trans_10).
// There is a unique solution between 0.0 and 1.0, due to the monotonicity and
// an opposite sign at 0.0 and 1.0.
// For simplicity, we reformulate the equation as
// f(x) = x ^ (units - 1) + a x + b.
// Its derivative is
// f'(x) = (units - 1) x ^ (units - 2) + a.
// The derivative is strictly greater than 0 when x is between 0 and 1.
// We use Newton's method to solve the equation, iteration is
// x(k+1) = x(k) - f(x) / f'(x);
const double kPrecision = 0.001f;
const int kIterations = 100;
const double a = (1.0f - loss_rate) / prob_trans_10;
const double b = (loss_rate - 1.0f) * (1.0f + 1.0f / prob_trans_10);
double x = 0.0f; // Starting point;
double f = b;
double f_p;
int iter = 0;
while ((f >= kPrecision || f <= -kPrecision) && iter < kIterations) {
f_p = (units - 1.0f) * pow(x, units - 2) + a;
x -= f / f_p;
if (x > 1.0f) {
x = 1.0f;
} else if (x < 0.0f) {
x = 0.0f;
}
f = pow(x, units - 1) + a * x + b;
iter ++;
}
return x;
}
NetEqQualityTest::NetEqQualityTest(int block_duration_ms,
int in_sampling_khz,
int out_sampling_khz,
enum NetEqDecoder decoder_type,
int channels,
std::string in_filename,
std::string out_filename)
: decoded_time_ms_(0),
decodable_time_ms_(0),
drift_factor_(FLAGS_drift_factor),
packet_loss_rate_(FLAGS_packet_loss_rate),
block_duration_ms_(block_duration_ms),
in_sampling_khz_(in_sampling_khz),
out_sampling_khz_(out_sampling_khz),
decoder_type_(decoder_type),
channels_(channels),
in_filename_(in_filename),
out_filename_(out_filename),
log_filename_(out_filename + ".log"),
in_size_samples_(in_sampling_khz_ * block_duration_ms_),
out_size_samples_(out_sampling_khz_ * kOutputSizeMs),
payload_size_bytes_(0),
max_payload_bytes_(0),
in_file_(new InputAudioFile(in_filename_)),
out_file_(NULL),
log_file_(NULL),
rtp_generator_(new RtpGenerator(in_sampling_khz_, 0, 0,
decodable_time_ms_)),
total_payload_size_bytes_(0) {
NetEq::Config config;
config.sample_rate_hz = out_sampling_khz_ * 1000;
neteq_.reset(NetEq::Create(config));
max_payload_bytes_ = in_size_samples_ * channels_ * sizeof(int16_t);
in_data_.reset(new int16_t[in_size_samples_ * channels_]);
payload_.reset(new uint8_t[max_payload_bytes_]);
out_data_.reset(new int16_t[out_size_samples_ * channels_]);
}
bool NoLoss::Lost() {
return false;
}
UniformLoss::UniformLoss(double loss_rate)
: loss_rate_(loss_rate) {
}
bool UniformLoss::Lost() {
int drop_this = rand();
return (drop_this < loss_rate_ * RAND_MAX);
}
GilbertElliotLoss::GilbertElliotLoss(double prob_trans_11, double prob_trans_01)
: prob_trans_11_(prob_trans_11),
prob_trans_01_(prob_trans_01),
lost_last_(false),
uniform_loss_model_(new UniformLoss(0)) {
}
bool GilbertElliotLoss::Lost() {
// Simulate bursty channel (Gilbert model).
// (1st order) Markov chain model with memory of the previous/last
// packet state (lost or received).
if (lost_last_) {
// Previous packet was not received.
uniform_loss_model_->set_loss_rate(prob_trans_11_);
return lost_last_ = uniform_loss_model_->Lost();
} else {
uniform_loss_model_->set_loss_rate(prob_trans_01_);
return lost_last_ = uniform_loss_model_->Lost();
}
}
void NetEqQualityTest::SetUp() {
out_file_ = fopen(out_filename_.c_str(), "wb");
log_file_ = fopen(log_filename_.c_str(), "wt");
ASSERT_TRUE(out_file_ != NULL);
ASSERT_EQ(0, neteq_->RegisterPayloadType(decoder_type_, kPayloadType));
rtp_generator_->set_drift_factor(drift_factor_);
int units = block_duration_ms_ / kPacketLossTimeUnitMs;
switch (FLAGS_random_loss_mode) {
case 1: {
// |unit_loss_rate| is the packet loss rate for each unit time interval
// (kPacketLossTimeUnitMs). Since a packet loss event is generated if any
// of |block_duration_ms_ / kPacketLossTimeUnitMs| unit time intervals of
// a full packet duration is drawn with a loss, |unit_loss_rate| fulfills
// (1 - unit_loss_rate) ^ (block_duration_ms_ / kPacketLossTimeUnitMs) ==
// 1 - packet_loss_rate.
double unit_loss_rate = (1.0f - pow(1.0f - 0.01f * packet_loss_rate_,
1.0f / units));
loss_model_.reset(new UniformLoss(unit_loss_rate));
break;
}
case 2: {
// |FLAGS_burst_length| should be integer times of kPacketLossTimeUnitMs.
ASSERT_EQ(0, FLAGS_burst_length % kPacketLossTimeUnitMs);
// We do not allow 100 percent packet loss in Gilbert Elliot model, which
// makes no sense.
ASSERT_GT(100, packet_loss_rate_);
// To guarantee the overall packet loss rate, transition probabilities
// need to satisfy:
// pi_0 * (1 - prob_trans_01_) ^ units +
// pi_1 * prob_trans_10_ ^ (units - 1) == 1 - loss_rate
// pi_0 = prob_trans_10 / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of no-loss
// pi_1 = prob_trans_01_ / (prob_trans_10 + prob_trans_01_)
// is the stationary state probability of loss
// After a derivation prob_trans_00 should satisfy:
// prob_trans_00 ^ (units - 1) = (loss_rate - 1) / prob_trans_10 *
// prob_trans_00 + (1 - loss_rate) * (1 + 1 / prob_trans_10).
double loss_rate = 0.01f * packet_loss_rate_;
double prob_trans_10 = 1.0f * kPacketLossTimeUnitMs / FLAGS_burst_length;
double prob_trans_00 = ProbTrans00Solver(units, loss_rate, prob_trans_10);
loss_model_.reset(new GilbertElliotLoss(1.0f - prob_trans_10,
1.0f - prob_trans_00));
break;
}
default: {
loss_model_.reset(new NoLoss);
break;
}
}
// Make sure that the packet loss profile is same for all derived tests.
srand(kInitSeed);
}
void NetEqQualityTest::TearDown() {
fclose(out_file_);
}
bool NetEqQualityTest::PacketLost() {
int cycles = block_duration_ms_ / kPacketLossTimeUnitMs;
// The loop is to make sure that codecs with different block lengths share the
// same packet loss profile.
bool lost = false;
for (int idx = 0; idx < cycles; idx ++) {
if (loss_model_->Lost()) {
// The packet will be lost if any of the drawings indicates a loss, but
// the loop has to go on to make sure that codecs with different block
// lengths keep the same pace.
lost = true;
}
}
return lost;
}
int NetEqQualityTest::Transmit() {
int packet_input_time_ms =
rtp_generator_->GetRtpHeader(kPayloadType, in_size_samples_,
&rtp_header_);
if (payload_size_bytes_ > 0) {
fprintf(log_file_, "Packet at %d ms", packet_input_time_ms);
if (!PacketLost()) {
int ret = neteq_->InsertPacket(rtp_header_, &payload_[0],
payload_size_bytes_,
packet_input_time_ms * in_sampling_khz_);
if (ret != NetEq::kOK)
return -1;
fprintf(log_file_, " OK.\n");
} else {
fprintf(log_file_, " Lost.\n");
}
}
return packet_input_time_ms;
}
int NetEqQualityTest::DecodeBlock() {
int channels;
int samples;
int ret = neteq_->GetAudio(out_size_samples_ * channels_, &out_data_[0],
&samples, &channels, NULL);
if (ret != NetEq::kOK) {
return -1;
} else {
assert(channels == channels_);
assert(samples == kOutputSizeMs * out_sampling_khz_);
fwrite(&out_data_[0], sizeof(int16_t), samples * channels, out_file_);
return samples;
}
}
void NetEqQualityTest::Simulate(int end_time_ms) {
int audio_size_samples;
while (decoded_time_ms_ < end_time_ms) {
// Assume 10 packets in packets buffer.
while (decodable_time_ms_ - 10 * block_duration_ms_ < decoded_time_ms_) {
ASSERT_TRUE(in_file_->Read(in_size_samples_ * channels_, &in_data_[0]));
payload_size_bytes_ = EncodeBlock(&in_data_[0],
in_size_samples_, &payload_[0],
max_payload_bytes_);
total_payload_size_bytes_ += payload_size_bytes_;
decodable_time_ms_ = Transmit() + block_duration_ms_;
}
audio_size_samples = DecodeBlock();
if (audio_size_samples > 0) {
decoded_time_ms_ += audio_size_samples / out_sampling_khz_;
}
}
fprintf(log_file_, "%f", 8.0f * total_payload_size_bytes_ / end_time_ms);
}
} // namespace test
} // namespace webrtc
|