File: opensles_input.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (543 lines) | stat: -rw-r--r-- 17,301 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_device/android/opensles_input.h"

#include <assert.h>

#include "webrtc/modules/audio_device/android/audio_common.h"
#include "webrtc/modules/audio_device/android/opensles_common.h"
#include "webrtc/modules/audio_device/android/single_rw_fifo.h"
#include "webrtc/modules/audio_device/audio_device_buffer.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/thread_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"

#define VOID_RETURN
#define OPENSL_RETURN_ON_FAILURE(op, ret_val)                    \
  do {                                                           \
    SLresult err = (op);                                         \
    if (err != SL_RESULT_SUCCESS) {                              \
      WEBRTC_TRACE(kTraceError, kTraceAudioDevice, id_,          \
                   "OpenSL error: %d", err);                     \
      assert(false);                                             \
      return ret_val;                                            \
    }                                                            \
  } while (0)

static const SLEngineOption kOption[] = {
  { SL_ENGINEOPTION_THREADSAFE, static_cast<SLuint32>(SL_BOOLEAN_TRUE) },
};

enum {
  kNoOverrun,
  kOverrun,
};

namespace webrtc {

OpenSlesInput::OpenSlesInput(
    const int32_t id, PlayoutDelayProvider* delay_provider)
    : id_(id),
      delay_provider_(delay_provider),
      initialized_(false),
      mic_initialized_(false),
      rec_initialized_(false),
      crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
      recording_(false),
      num_fifo_buffers_needed_(0),
      number_overruns_(0),
      sles_engine_(NULL),
      sles_engine_itf_(NULL),
      sles_recorder_(NULL),
      sles_recorder_itf_(NULL),
      sles_recorder_sbq_itf_(NULL),
      audio_buffer_(NULL),
      active_queue_(0),
      rec_sampling_rate_(0),
      agc_enabled_(false),
      recording_delay_(0) {
}

OpenSlesInput::~OpenSlesInput() {
}

int32_t OpenSlesInput::SetAndroidAudioDeviceObjects(void* javaVM,
                                                    void* env,
                                                    void* context) {
  return 0;
}

void OpenSlesInput::ClearAndroidAudioDeviceObjects() {
}

int32_t OpenSlesInput::Init() {
  assert(!initialized_);

  // Set up OpenSL engine.
  OPENSL_RETURN_ON_FAILURE(slCreateEngine(&sles_engine_, 1, kOption, 0,
                                          NULL, NULL),
                           -1);
  OPENSL_RETURN_ON_FAILURE((*sles_engine_)->Realize(sles_engine_,
                                                    SL_BOOLEAN_FALSE),
                           -1);
  OPENSL_RETURN_ON_FAILURE((*sles_engine_)->GetInterface(sles_engine_,
                                                         SL_IID_ENGINE,
                                                         &sles_engine_itf_),
                           -1);

  if (InitSampleRate() != 0) {
    return -1;
  }
  AllocateBuffers();
  initialized_ = true;
  return 0;
}

int32_t OpenSlesInput::Terminate() {
  // It is assumed that the caller has stopped recording before terminating.
  assert(!recording_);
  (*sles_engine_)->Destroy(sles_engine_);
  initialized_ = false;
  mic_initialized_ = false;
  rec_initialized_ = false;
  return 0;
}

int32_t OpenSlesInput::RecordingDeviceName(uint16_t index,
                                           char name[kAdmMaxDeviceNameSize],
                                           char guid[kAdmMaxGuidSize]) {
  assert(index == 0);
  // Empty strings.
  name[0] = '\0';
  guid[0] = '\0';
  return 0;
}

int32_t OpenSlesInput::SetRecordingDevice(uint16_t index) {
  assert(index == 0);
  return 0;
}

int32_t OpenSlesInput::RecordingIsAvailable(bool& available) {  // NOLINT
  available = true;
  return 0;
}

int32_t OpenSlesInput::InitRecording() {
  assert(initialized_);
  rec_initialized_ = true;
  return 0;
}

int32_t OpenSlesInput::StartRecording() {
  assert(rec_initialized_);
  assert(!recording_);
  if (!CreateAudioRecorder()) {
    return -1;
  }
  // Setup to receive buffer queue event callbacks.
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_sbq_itf_)->RegisterCallback(
          sles_recorder_sbq_itf_,
          RecorderSimpleBufferQueueCallback,
          this),
      -1);

  if (!EnqueueAllBuffers()) {
    return -1;
  }

  {
    // To prevent the compiler from e.g. optimizing the code to
    // recording_ = StartCbThreads() which wouldn't have been thread safe.
    CriticalSectionScoped lock(crit_sect_.get());
    recording_ = true;
  }
  if (!StartCbThreads()) {
    recording_ = false;
    return -1;
  }
  return 0;
}

int32_t OpenSlesInput::StopRecording() {
  StopCbThreads();
  DestroyAudioRecorder();
  recording_ = false;
  return 0;
}

int32_t OpenSlesInput::SetAGC(bool enable) {
  agc_enabled_ = enable;
  return 0;
}

int32_t OpenSlesInput::InitMicrophone() {
  assert(initialized_);
  assert(!recording_);
  mic_initialized_ = true;
  return 0;
}

int32_t OpenSlesInput::MicrophoneVolumeIsAvailable(bool& available) {  // NOLINT
  available = false;
  return 0;
}

int32_t OpenSlesInput::MinMicrophoneVolume(
    uint32_t& minVolume) const {  // NOLINT
  minVolume = 0;
  return 0;
}

int32_t OpenSlesInput::MicrophoneVolumeStepSize(
    uint16_t& stepSize) const {
  stepSize = 1;
  return 0;
}

int32_t OpenSlesInput::MicrophoneMuteIsAvailable(bool& available) {  // NOLINT
  available = false;  // Mic mute not supported on Android
  return 0;
}

int32_t OpenSlesInput::MicrophoneBoostIsAvailable(bool& available) {  // NOLINT
  available = false;  // Mic boost not supported on Android.
  return 0;
}

int32_t OpenSlesInput::SetMicrophoneBoost(bool enable) {
  assert(false);
  return -1;  // Not supported
}

int32_t OpenSlesInput::MicrophoneBoost(bool& enabled) const {  // NOLINT
  assert(false);
  return -1;  // Not supported
}

int32_t OpenSlesInput::StereoRecordingIsAvailable(bool& available) {  // NOLINT
  available = false;  // Stereo recording not supported on Android.
  return 0;
}

int32_t OpenSlesInput::StereoRecording(bool& enabled) const {  // NOLINT
  enabled = false;
  return 0;
}

int32_t OpenSlesInput::RecordingDelay(uint16_t& delayMS) const {  // NOLINT
  delayMS = recording_delay_;
  return 0;
}

void OpenSlesInput::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) {
  audio_buffer_ = audioBuffer;
}

int OpenSlesInput::InitSampleRate() {
  UpdateSampleRate();
  audio_buffer_->SetRecordingSampleRate(rec_sampling_rate_);
  audio_buffer_->SetRecordingChannels(kNumChannels);
  UpdateRecordingDelay();
  return 0;
}

int OpenSlesInput::buffer_size_samples() const {
  // Since there is no low latency recording, use buffer size corresponding to
  // 10ms of data since that's the framesize WebRTC uses. Getting any other
  // size would require patching together buffers somewhere before passing them
  // to WebRTC.
  return rec_sampling_rate_ * 10 / 1000;
}

int OpenSlesInput::buffer_size_bytes() const {
  return buffer_size_samples() * kNumChannels * sizeof(int16_t);
}

void OpenSlesInput::UpdateRecordingDelay() {
  // TODO(hellner): Add accurate delay estimate.
  // On average half the current buffer will have been filled with audio.
  int outstanding_samples =
      (TotalBuffersUsed() - 0.5) * buffer_size_samples();
  recording_delay_ = outstanding_samples / (rec_sampling_rate_ / 1000);
}

void OpenSlesInput::UpdateSampleRate() {
  rec_sampling_rate_ = audio_manager_.low_latency_supported() ?
      audio_manager_.native_output_sample_rate() : kDefaultSampleRate;
}

void OpenSlesInput::CalculateNumFifoBuffersNeeded() {
  // Buffer size is 10ms of data.
  num_fifo_buffers_needed_ = kNum10MsToBuffer;
}

void OpenSlesInput::AllocateBuffers() {
  // Allocate FIFO to handle passing buffers between processing and OpenSL
  // threads.
  CalculateNumFifoBuffersNeeded();
  assert(num_fifo_buffers_needed_ > 0);
  fifo_.reset(new SingleRwFifo(num_fifo_buffers_needed_));

  // Allocate the memory area to be used.
  rec_buf_.reset(new scoped_ptr<int8_t[]>[TotalBuffersUsed()]);
  for (int i = 0; i < TotalBuffersUsed(); ++i) {
    rec_buf_[i].reset(new int8_t[buffer_size_bytes()]);
  }
}

int OpenSlesInput::TotalBuffersUsed() const {
  return num_fifo_buffers_needed_ + kNumOpenSlBuffers;
}

bool OpenSlesInput::EnqueueAllBuffers() {
  active_queue_ = 0;
  number_overruns_ = 0;
  for (int i = 0; i < kNumOpenSlBuffers; ++i) {
    memset(rec_buf_[i].get(), 0, buffer_size_bytes());
    OPENSL_RETURN_ON_FAILURE(
        (*sles_recorder_sbq_itf_)->Enqueue(
            sles_recorder_sbq_itf_,
            reinterpret_cast<void*>(rec_buf_[i].get()),
            buffer_size_bytes()),
        false);
  }
  // In case of underrun the fifo will be at capacity. In case of first enqueue
  // no audio can have been returned yet meaning fifo must be empty. Any other
  // values are unexpected.
  assert(fifo_->size() == fifo_->capacity() ||
         fifo_->size() == 0);
  // OpenSL recording has been stopped. I.e. only this thread is touching
  // |fifo_|.
  while (fifo_->size() != 0) {
    // Clear the fifo.
    fifo_->Pop();
  }
  return true;
}

bool OpenSlesInput::CreateAudioRecorder() {
  if (!event_.Start()) {
    assert(false);
    return false;
  }
  SLDataLocator_IODevice micLocator = {
    SL_DATALOCATOR_IODEVICE, SL_IODEVICE_AUDIOINPUT,
    SL_DEFAULTDEVICEID_AUDIOINPUT, NULL };
  SLDataSource audio_source = { &micLocator, NULL };

  SLDataLocator_AndroidSimpleBufferQueue simple_buf_queue = {
    SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE,
    static_cast<SLuint32>(TotalBuffersUsed())
  };
  SLDataFormat_PCM configuration =
      webrtc_opensl::CreatePcmConfiguration(rec_sampling_rate_);
  SLDataSink audio_sink = { &simple_buf_queue, &configuration };

  // Interfaces for recording android audio data and Android are needed.
  // Note the interfaces still need to be initialized. This only tells OpenSl
  // that the interfaces will be needed at some point.
  const SLInterfaceID id[kNumInterfaces] = {
    SL_IID_ANDROIDSIMPLEBUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION };
  const SLboolean req[kNumInterfaces] = {
    SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE };
  OPENSL_RETURN_ON_FAILURE(
      (*sles_engine_itf_)->CreateAudioRecorder(sles_engine_itf_,
                                               &sles_recorder_,
                                               &audio_source,
                                               &audio_sink,
                                               kNumInterfaces,
                                               id,
                                               req),
      false);

  SLAndroidConfigurationItf recorder_config;
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_)->GetInterface(sles_recorder_,
                                      SL_IID_ANDROIDCONFIGURATION,
                                      &recorder_config),
      false);

  // Set audio recorder configuration to
  // SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION which ensures that we
  // use the main microphone tuned for audio communications.
  SLint32 stream_type = SL_ANDROID_RECORDING_PRESET_VOICE_COMMUNICATION;
  OPENSL_RETURN_ON_FAILURE(
      (*recorder_config)->SetConfiguration(recorder_config,
                                           SL_ANDROID_KEY_RECORDING_PRESET,
                                           &stream_type,
                                           sizeof(SLint32)),
      false);

  // Realize the recorder in synchronous mode.
  OPENSL_RETURN_ON_FAILURE((*sles_recorder_)->Realize(sles_recorder_,
                                                      SL_BOOLEAN_FALSE),
                           false);
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_)->GetInterface(sles_recorder_, SL_IID_RECORD,
                                      static_cast<void*>(&sles_recorder_itf_)),
      false);
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_)->GetInterface(
          sles_recorder_,
          SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
          static_cast<void*>(&sles_recorder_sbq_itf_)),
      false);
  return true;
}

void OpenSlesInput::DestroyAudioRecorder() {
  event_.Stop();
  if (sles_recorder_sbq_itf_) {
    // Release all buffers currently queued up.
    OPENSL_RETURN_ON_FAILURE(
        (*sles_recorder_sbq_itf_)->Clear(sles_recorder_sbq_itf_),
        VOID_RETURN);
    sles_recorder_sbq_itf_ = NULL;
  }
  sles_recorder_itf_ = NULL;

  if (sles_recorder_) {
    (*sles_recorder_)->Destroy(sles_recorder_);
    sles_recorder_ = NULL;
  }
}

bool OpenSlesInput::HandleOverrun(int event_id, int event_msg) {
  if (!recording_) {
    return false;
  }
  if (event_id == kNoOverrun) {
    return false;
  }
  WEBRTC_TRACE(kTraceWarning, kTraceAudioDevice, id_, "Audio overrun");
  assert(event_id == kOverrun);
  assert(event_msg > 0);
  // Wait for all enqueued buffers be flushed.
  if (event_msg != kNumOpenSlBuffers) {
    return true;
  }
  // All buffers passed to OpenSL have been flushed. Restart the audio from
  // scratch.
  // No need to check sles_recorder_itf_ as recording_ would be false before it
  // is set to NULL.
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
                                            SL_RECORDSTATE_STOPPED),
      true);
  EnqueueAllBuffers();
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
                                            SL_RECORDSTATE_RECORDING),
      true);
  return true;
}

void OpenSlesInput::RecorderSimpleBufferQueueCallback(
    SLAndroidSimpleBufferQueueItf queue_itf,
    void* context) {
  OpenSlesInput* audio_device = reinterpret_cast<OpenSlesInput*>(context);
  audio_device->RecorderSimpleBufferQueueCallbackHandler(queue_itf);
}

void OpenSlesInput::RecorderSimpleBufferQueueCallbackHandler(
    SLAndroidSimpleBufferQueueItf queue_itf) {
  if (fifo_->size() >= fifo_->capacity() || number_overruns_ > 0) {
    ++number_overruns_;
    event_.SignalEvent(kOverrun, number_overruns_);
    return;
  }
  int8_t* audio = rec_buf_[active_queue_].get();
  // There is at least one spot available in the fifo.
  fifo_->Push(audio);
  active_queue_ = (active_queue_ + 1) % TotalBuffersUsed();
  event_.SignalEvent(kNoOverrun, 0);
  // active_queue_ is indexing the next buffer to record to. Since the current
  // buffer has been recorded it means that the buffer index
  // kNumOpenSlBuffers - 1 past |active_queue_| contains the next free buffer.
  // Since |fifo_| wasn't at capacity, at least one buffer is free to be used.
  int next_free_buffer =
      (active_queue_ + kNumOpenSlBuffers - 1) % TotalBuffersUsed();
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_sbq_itf_)->Enqueue(
          sles_recorder_sbq_itf_,
          reinterpret_cast<void*>(rec_buf_[next_free_buffer].get()),
          buffer_size_bytes()),
      VOID_RETURN);
}

bool OpenSlesInput::StartCbThreads() {
  rec_thread_.reset(ThreadWrapper::CreateThread(CbThread,
                                                this,
                                                kRealtimePriority,
                                                "opensl_rec_thread"));
  assert(rec_thread_.get());
  unsigned int thread_id = 0;
  if (!rec_thread_->Start(thread_id)) {
    assert(false);
    return false;
  }
  OPENSL_RETURN_ON_FAILURE(
      (*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
                                            SL_RECORDSTATE_RECORDING),
      false);
  return true;
}

void OpenSlesInput::StopCbThreads() {
  {
    CriticalSectionScoped lock(crit_sect_.get());
    recording_ = false;
  }
  if (sles_recorder_itf_) {
    OPENSL_RETURN_ON_FAILURE(
        (*sles_recorder_itf_)->SetRecordState(sles_recorder_itf_,
                                              SL_RECORDSTATE_STOPPED),
        VOID_RETURN);
  }
  if (rec_thread_.get() == NULL) {
    return;
  }
  event_.Stop();
  if (rec_thread_->Stop()) {
    rec_thread_.reset();
  } else {
    assert(false);
  }
}

bool OpenSlesInput::CbThread(void* context) {
  return reinterpret_cast<OpenSlesInput*>(context)->CbThreadImpl();
}

bool OpenSlesInput::CbThreadImpl() {
  int event_id;
  int event_msg;
  // event_ must not be waited on while a lock has been taken.
  event_.WaitOnEvent(&event_id, &event_msg);

  CriticalSectionScoped lock(crit_sect_.get());
  if (HandleOverrun(event_id, event_msg)) {
    return recording_;
  }
  // If the fifo_ has audio data process it.
  while (fifo_->size() > 0 && recording_) {
    int8_t* audio = fifo_->Pop();
    audio_buffer_->SetRecordedBuffer(audio, buffer_size_samples());
    audio_buffer_->SetVQEData(delay_provider_->PlayoutDelayMs(),
                              recording_delay_, 0);
    audio_buffer_->DeliverRecordedData();
  }
  return recording_;
}

}  // namespace webrtc