1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
extern "C" {
#include "webrtc/modules/audio_processing/aec/aec_core.h"
}
#include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
#include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
#include "webrtc/test/testsupport/gtest_disable.h"
#include "webrtc/typedefs.h"
namespace {
class SystemDelayTest : public ::testing::Test {
protected:
SystemDelayTest();
virtual void SetUp();
virtual void TearDown();
// Initialization of AEC handle with respect to |sample_rate_hz|. Since the
// device sample rate is unimportant we set that value to 48000 Hz.
void Init(int sample_rate_hz);
// Makes one render call and one capture call in that specific order.
void RenderAndCapture(int device_buffer_ms);
// Fills up the far-end buffer with respect to the default device buffer size.
int BufferFillUp();
// Runs and verifies the behavior in a stable startup procedure.
void RunStableStartup();
// Maps buffer size in ms into samples, taking the unprocessed frame into
// account.
int MapBufferSizeToSamples(int size_in_ms);
void* handle_;
Aec* self_;
int samples_per_frame_;
// Dummy input/output speech data.
static const int kSamplesPerChunk = 160;
float far_[kSamplesPerChunk];
float near_[kSamplesPerChunk];
float out_[kSamplesPerChunk];
};
SystemDelayTest::SystemDelayTest()
: handle_(NULL), self_(NULL), samples_per_frame_(0) {
// Dummy input data are set with more or less arbitrary non-zero values.
for (int i = 0; i < kSamplesPerChunk; i++) {
far_[i] = 257.0;
near_[i] = 514.0;
}
memset(out_, 0, sizeof(out_));
}
void SystemDelayTest::SetUp() {
ASSERT_EQ(0, WebRtcAec_Create(&handle_));
self_ = reinterpret_cast<Aec*>(handle_);
}
void SystemDelayTest::TearDown() {
// Free AEC
ASSERT_EQ(0, WebRtcAec_Free(handle_));
handle_ = NULL;
}
// In SWB mode nothing is added to the buffer handling with respect to
// functionality compared to WB. We therefore only verify behavior in NB and WB.
static const int kSampleRateHz[] = {8000, 16000};
static const size_t kNumSampleRates =
sizeof(kSampleRateHz) / sizeof(*kSampleRateHz);
// Default audio device buffer size used.
static const int kDeviceBufMs = 100;
// Requirement for a stable device convergence time in ms. Should converge in
// less than |kStableConvergenceMs|.
static const int kStableConvergenceMs = 100;
// Maximum convergence time in ms. This means that we should leave the startup
// phase after |kMaxConvergenceMs| independent of device buffer stability
// conditions.
static const int kMaxConvergenceMs = 500;
void SystemDelayTest::Init(int sample_rate_hz) {
// Initialize AEC
EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000));
// One frame equals 10 ms of data.
samples_per_frame_ = sample_rate_hz / 100;
}
void SystemDelayTest::RenderAndCapture(int device_buffer_ms) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
EXPECT_EQ(0,
WebRtcAec_Process(handle_,
near_,
NULL,
out_,
NULL,
samples_per_frame_,
device_buffer_ms,
0));
}
int SystemDelayTest::BufferFillUp() {
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in through
// Process().
int buffer_size = 0;
for (int i = 0; i < kDeviceBufMs / 10; i++) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
buffer_size += samples_per_frame_;
EXPECT_EQ(buffer_size, WebRtcAec_system_delay(self_->aec));
}
return buffer_size;
}
void SystemDelayTest::RunStableStartup() {
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in through
// Process().
int buffer_size = BufferFillUp();
// A stable device should be accepted and put in a regular process mode within
// |kStableConvergenceMs|.
int process_time_ms = 0;
for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
RenderAndCapture(kDeviceBufMs);
buffer_size += samples_per_frame_;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GT(kStableConvergenceMs, process_time_ms);
// Verify that the buffer has been flushed.
EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec));
}
int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms) {
// The extra 10 ms corresponds to the unprocessed frame.
return (size_in_ms + 10) * samples_per_frame_ / 10;
}
// The tests should meet basic requirements and not be adjusted to what is
// actually implemented. If we don't get good code coverage this way we either
// lack in tests or have unnecessary code.
// General requirements:
// 1) If we add far-end data the system delay should be increased with the same
// amount we add.
// 2) If the far-end buffer is full we should flush the oldest data to make room
// for the new. In this case the system delay is unaffected.
// 3) There should exist a startup phase in which the buffer size is to be
// determined. In this phase no cancellation should be performed.
// 4) Under stable conditions (small variations in device buffer sizes) the AEC
// should determine an appropriate local buffer size within
// |kStableConvergenceMs| ms.
// 5) Under unstable conditions the AEC should make a decision within
// |kMaxConvergenceMs| ms.
// 6) If the local buffer runs out of data we should stuff the buffer with older
// frames.
// 7) The system delay should within |kMaxConvergenceMs| ms heal from
// disturbances like drift, data glitches, toggling events and outliers.
// 8) The system delay should never become negative.
TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) {
// When we add data to the AEC buffer the internal system delay should be
// incremented with the same amount as the size of data.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// Loop through a couple of calls to make sure the system delay increments
// correctly.
for (int j = 1; j <= 5; j++) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
EXPECT_EQ(j * samples_per_frame_, WebRtcAec_system_delay(self_->aec));
}
}
}
// TODO(bjornv): Add a test to verify behavior if the far-end buffer is full
// when adding new data.
TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) {
// We run the system in a stable startup. After that we verify that the system
// delay meets the requirements.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// Verify system delay with respect to requirements, i.e., the
// |system_delay| is in the interval [75%, 100%] of what's reported on the
// average.
int average_reported_delay = kDeviceBufMs * samples_per_frame_ / 10;
EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec));
EXPECT_LE(average_reported_delay * 3 / 4,
WebRtcAec_system_delay(self_->aec));
}
}
TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) {
// In an unstable system we would start processing after |kMaxConvergenceMs|.
// On the last frame the AEC buffer is adjusted to 60% of the last reported
// device buffer size.
// We construct an unstable system by altering the device buffer size between
// two values |kDeviceBufMs| +- 25 ms.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in on the
// average through Process().
int buffer_size = BufferFillUp();
int buffer_offset_ms = 25;
int reported_delay_ms = 0;
int process_time_ms = 0;
for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
reported_delay_ms = kDeviceBufMs + buffer_offset_ms;
RenderAndCapture(reported_delay_ms);
buffer_size += samples_per_frame_;
buffer_offset_ms = -buffer_offset_ms;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GE(kMaxConvergenceMs, process_time_ms);
// Verify that the buffer has been flushed.
EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec));
// Verify system delay with respect to requirements, i.e., the
// |system_delay| is in the interval [60%, 100%] of what's last reported.
EXPECT_GE(reported_delay_ms * samples_per_frame_ / 10,
WebRtcAec_system_delay(self_->aec));
EXPECT_LE(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5,
WebRtcAec_system_delay(self_->aec));
}
}
TEST_F(SystemDelayTest,
DISABLED_ON_ANDROID(CorrectDelayAfterStableBufferBuildUp)) {
// In this test we start by establishing the device buffer size during stable
// conditions, but with an empty internal far-end buffer. Once that is done we
// verify that the system delay is increased correctly until we have reach an
// internal buffer size of 75% of what's been reported.
// This test assumes the reported delays are used.
WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// We assume that running |kStableConvergenceMs| calls will put the
// algorithm in a state where the device buffer size has been determined. We
// can make that assumption since we have a separate stability test.
int process_time_ms = 0;
for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
EXPECT_EQ(0,
WebRtcAec_Process(handle_,
near_,
NULL,
out_,
NULL,
samples_per_frame_,
kDeviceBufMs,
0));
}
// Verify that a buffer size has been established.
EXPECT_EQ(0, self_->checkBuffSize);
// We now have established the required buffer size. Let us verify that we
// fill up before leaving the startup phase for normal processing.
int buffer_size = 0;
int target_buffer_size = kDeviceBufMs * samples_per_frame_ / 10 * 3 / 4;
process_time_ms = 0;
for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
RenderAndCapture(kDeviceBufMs);
buffer_size += samples_per_frame_;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GT(kMaxConvergenceMs, process_time_ms);
// Verify that the buffer has reached the desired size.
EXPECT_LE(target_buffer_size, WebRtcAec_system_delay(self_->aec));
// Verify normal behavior (system delay is kept constant) after startup by
// running a couple of calls to BufferFarend() and Process().
for (int j = 0; j < 6; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
RenderAndCapture(kDeviceBufMs);
EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
}
}
}
TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) {
// Here we test a buffer under run scenario. If we keep on calling
// WebRtcAec_Process() we will finally run out of data, but should
// automatically stuff the buffer. We verify this behavior by checking if the
// system delay goes negative.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// The AEC has now left the Startup phase. We now have at most
// |kStableConvergenceMs| in the buffer. Keep on calling Process() until
// we run out of data and verify that the system delay is non-negative.
for (int j = 0; j <= kStableConvergenceMs; j += 10) {
EXPECT_EQ(0,
WebRtcAec_Process(handle_,
near_,
NULL,
out_,
NULL,
samples_per_frame_,
kDeviceBufMs,
0));
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
TEST_F(SystemDelayTest, DISABLED_ON_ANDROID(CorrectDelayDuringDrift)) {
// This drift test should verify that the system delay is never exceeding the
// device buffer. The drift is simulated by decreasing the reported device
// buffer size by 1 ms every 100 ms. If the device buffer size goes below 30
// ms we jump (add) 10 ms to give a repeated pattern.
// This test assumes the reported delays are used.
WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// We have now left the startup phase and proceed with normal processing.
int jump = 0;
for (int j = 0; j < 1000; j++) {
// Drift = -1 ms per 100 ms of data.
int device_buf_ms = kDeviceBufMs - (j / 10) + jump;
int device_buf = MapBufferSizeToSamples(device_buf_ms);
if (device_buf_ms < 30) {
// Add 10 ms data, taking affect next frame.
jump += 10;
}
RenderAndCapture(device_buf_ms);
// Verify that the system delay does not exceed the device buffer.
EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
TEST_F(SystemDelayTest, DISABLED_ON_ANDROID(ShouldRecoverAfterGlitch)) {
// This glitch test should verify that the system delay recovers if there is
// a glitch in data. The data glitch is constructed as 200 ms of buffering
// after which the stable procedure continues. The glitch is never reported by
// the device.
// The system is said to be in a non-causal state if the difference between
// the device buffer and system delay is less than a block (64 samples).
// This test assumes the reported delays are used.
WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
// Glitch state.
for (int j = 0; j < 20; j++) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
// No need to verify system delay, since that is done in a separate test.
}
// Verify that we are in a non-causal state, i.e.,
// |system_delay| > |device_buf|.
EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec));
// Recover state. Should recover at least 4 ms of data per 10 ms, hence a
// glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover from.
bool non_causal = true; // We are currently in a non-causal state.
for (int j = 0; j < 50; j++) {
int system_delay_before = WebRtcAec_system_delay(self_->aec);
RenderAndCapture(kDeviceBufMs);
int system_delay_after = WebRtcAec_system_delay(self_->aec);
// We have recovered if |device_buf| - |system_delay_after| >= 64 (one
// block). During recovery |system_delay_after| < |system_delay_before|,
// otherwise they are equal.
if (non_causal) {
EXPECT_LT(system_delay_after, system_delay_before);
if (device_buf - system_delay_after >= 64) {
non_causal = false;
}
} else {
EXPECT_EQ(system_delay_before, system_delay_after);
}
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
// Check that we have recovered.
EXPECT_FALSE(non_causal);
}
}
TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) {
// This spurious device buffer data test aims at verifying that the system
// delay is unaffected by large outliers.
// The system is said to be in a non-causal state if the difference between
// the device buffer and system delay is less than a block (64 samples).
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
// Normal state. We are currently not in a non-causal state.
bool non_causal = false;
// Run 1 s and replace device buffer size with 500 ms every 100 ms.
for (int j = 0; j < 100; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
int device_buf_ms = kDeviceBufMs;
if (j % 10 == 0) {
device_buf_ms = 500;
}
RenderAndCapture(device_buf_ms);
// Check for non-causality.
if (device_buf - WebRtcAec_system_delay(self_->aec) < 64) {
non_causal = true;
}
EXPECT_FALSE(non_causal);
EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) {
// This test aims at verifying that the system delay is "unaffected" by
// toggling values reported by the device.
// The test is constructed such that every other device buffer value is zero
// and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The
// zero values will force us into a non-causal state and thereby lowering the
// system delay until we basically runs out of data. Once that happens the
// buffer will be stuffed.
// TODO(bjornv): This test will have a better impact if we verified that the
// delay estimate goes up when the system delay goes done to meet the average
// device buffer size.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
// Normal state. We are currently not in a non-causal state.
bool non_causal = false;
// Loop through 100 frames (both render and capture), which equals 1 s of
// data. Every odd frame we set the device buffer size to 2 * |kDeviceBufMs|
// and even frames we set the device buffer size to zero.
for (int j = 0; j < 100; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
int device_buf_ms = 2 * (j % 2) * kDeviceBufMs;
RenderAndCapture(device_buf_ms);
// Check for non-causality, compared with the average device buffer size.
non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64);
EXPECT_GE(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
// Verify we are not in a non-causal state.
EXPECT_FALSE(non_causal);
}
}
} // namespace
|