1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/agc/agc.h"
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include "webrtc/common_audio/resampler/include/resampler.h"
#include "webrtc/modules/audio_processing/agc/agc_audio_proc.h"
#include "webrtc/modules/audio_processing/agc/common.h"
#include "webrtc/modules/audio_processing/agc/histogram.h"
#include "webrtc/modules/audio_processing/agc/pitch_based_vad.h"
#include "webrtc/modules/audio_processing/agc/standalone_vad.h"
#include "webrtc/modules/audio_processing/agc/utility.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/compile_assert.h"
namespace webrtc {
namespace {
const int kDefaultLevelDbfs = -18;
const double kDefaultVoiceValue = 1.0;
const int kNumAnalysisFrames = 100;
const double kActivityThreshold = 0.3;
} // namespace
Agc::Agc()
: target_level_loudness_(Dbfs2Loudness(kDefaultLevelDbfs)),
last_voice_probability_(kDefaultVoiceValue),
target_level_dbfs_(kDefaultLevelDbfs),
standalone_vad_enabled_(true),
histogram_(Histogram::Create(kNumAnalysisFrames)),
inactive_histogram_(Histogram::Create()),
audio_processing_(new AgcAudioProc()),
pitch_based_vad_(new PitchBasedVad()),
standalone_vad_(StandaloneVad::Create()),
// Initialize to the most common resampling situation.
resampler_(new Resampler(32000, kSampleRateHz, kResamplerSynchronous)) {
}
Agc::~Agc() {}
float Agc::AnalyzePreproc(const int16_t* audio, int length) {
assert(length > 0);
int num_clipped = 0;
for (int i = 0; i < length; ++i) {
if (audio[i] == 32767 || audio[i] == -32768)
++num_clipped;
}
return 1.0f * num_clipped / length;
}
int Agc::Process(const int16_t* audio, int length, int sample_rate_hz) {
assert(length == sample_rate_hz / 100);
if (sample_rate_hz > 32000) {
return -1;
}
// Resample to the required rate.
int16_t resampled[kLength10Ms];
const int16_t* resampled_ptr = audio;
if (sample_rate_hz != kSampleRateHz) {
if (resampler_->ResetIfNeeded(sample_rate_hz,
kSampleRateHz,
kResamplerSynchronous) != 0) {
return -1;
}
resampler_->Push(audio, length, resampled, kLength10Ms, length);
resampled_ptr = resampled;
}
assert(length == kLength10Ms);
if (standalone_vad_enabled_) {
if (standalone_vad_->AddAudio(resampled_ptr, length) != 0)
return -1;
}
AudioFeatures features;
audio_processing_->ExtractFeatures(resampled_ptr, length, &features);
if (features.num_frames > 0) {
if (features.silence) {
// The other features are invalid, so update the histogram with an
// arbitrary low value.
for (int n = 0; n < features.num_frames; ++n)
histogram_->Update(features.rms[n], 0.01);
return 0;
}
// Initialize to 0.5 which is a neutral value for combining probabilities,
// in case the standalone-VAD is not enabled.
double p_combined[] = {0.5, 0.5, 0.5, 0.5};
COMPILE_ASSERT(sizeof(p_combined) / sizeof(p_combined[0]) == kMaxNumFrames,
combined_probability_incorrect_size);
if (standalone_vad_enabled_) {
if (standalone_vad_->GetActivity(p_combined, kMaxNumFrames) < 0)
return -1;
}
// If any other VAD is enabled it must be combined before calling the
// pitch-based VAD.
if (pitch_based_vad_->VoicingProbability(features, p_combined) < 0)
return -1;
for (int n = 0; n < features.num_frames; n++) {
histogram_->Update(features.rms[n], p_combined[n]);
last_voice_probability_ = p_combined[n];
}
}
return 0;
}
bool Agc::GetRmsErrorDb(int* error) {
if (!error) {
assert(false);
return false;
}
if (histogram_->num_updates() < kNumAnalysisFrames) {
// We haven't yet received enough frames.
return false;
}
if (histogram_->AudioContent() < kNumAnalysisFrames * kActivityThreshold) {
// We are likely in an inactive segment.
return false;
}
double loudness = Linear2Loudness(histogram_->CurrentRms());
*error = std::floor(Loudness2Db(target_level_loudness_ - loudness) + 0.5);
histogram_->Reset();
return true;
}
void Agc::Reset() {
histogram_->Reset();
}
int Agc::set_target_level_dbfs(int level) {
// TODO(turajs): just some arbitrary sanity check. We can come up with better
// limits. The upper limit should be chosen such that the risk of clipping is
// low. The lower limit should not result in a too quiet signal.
if (level >= 0 || level <= -100)
return -1;
target_level_dbfs_ = level;
target_level_loudness_ = Dbfs2Loudness(level);
return 0;
}
void Agc::EnableStandaloneVad(bool enable) {
standalone_vad_enabled_ = enable;
}
} // namespace webrtc
|