1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/channel_buffer.h"
#include "webrtc/modules/audio_processing/common.h"
namespace webrtc {
namespace {
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
switch (layout) {
case AudioProcessing::kMono:
case AudioProcessing::kStereo:
return false;
case AudioProcessing::kMonoAndKeyboard:
case AudioProcessing::kStereoAndKeyboard:
return true;
}
assert(false);
return false;
}
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
switch (layout) {
case AudioProcessing::kMono:
case AudioProcessing::kStereo:
assert(false);
return -1;
case AudioProcessing::kMonoAndKeyboard:
return 1;
case AudioProcessing::kStereoAndKeyboard:
return 2;
}
assert(false);
return -1;
}
template <typename T>
void StereoToMono(const T* left, const T* right, T* out,
int samples_per_channel) {
for (int i = 0; i < samples_per_channel; ++i)
out[i] = (left[i] + right[i]) / 2;
}
} // namespace
AudioBuffer::AudioBuffer(int input_samples_per_channel,
int num_input_channels,
int process_samples_per_channel,
int num_process_channels,
int output_samples_per_channel)
: input_samples_per_channel_(input_samples_per_channel),
num_input_channels_(num_input_channels),
proc_samples_per_channel_(process_samples_per_channel),
num_proc_channels_(num_process_channels),
output_samples_per_channel_(output_samples_per_channel),
num_channels_(num_process_channels),
num_bands_(1),
samples_per_split_channel_(proc_samples_per_channel_),
mixed_low_pass_valid_(false),
reference_copied_(false),
activity_(AudioFrame::kVadUnknown),
keyboard_data_(NULL),
channels_(new IFChannelBuffer(proc_samples_per_channel_,
num_proc_channels_)) {
assert(input_samples_per_channel_ > 0);
assert(proc_samples_per_channel_ > 0);
assert(output_samples_per_channel_ > 0);
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
assert(num_proc_channels_ <= num_input_channels_);
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
num_proc_channels_));
}
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
output_samples_per_channel_ != proc_samples_per_channel_) {
// Create an intermediate buffer for resampling.
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
num_proc_channels_));
}
if (input_samples_per_channel_ != proc_samples_per_channel_) {
input_resamplers_.reserve(num_proc_channels_);
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_.push_back(
new PushSincResampler(input_samples_per_channel_,
proc_samples_per_channel_));
}
}
if (output_samples_per_channel_ != proc_samples_per_channel_) {
output_resamplers_.reserve(num_proc_channels_);
for (int i = 0; i < num_proc_channels_; ++i) {
output_resamplers_.push_back(
new PushSincResampler(proc_samples_per_channel_,
output_samples_per_channel_));
}
}
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel ||
proc_samples_per_channel_ == kSamplesPer48kHzChannel) {
samples_per_split_channel_ = kSamplesPer16kHzChannel;
num_bands_ = proc_samples_per_channel_ / samples_per_split_channel_;
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
num_proc_channels_));
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
num_proc_channels_));
splitting_filter_.reset(new SplittingFilter(num_proc_channels_));
if (proc_samples_per_channel_ == kSamplesPer48kHzChannel) {
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
num_proc_channels_));
}
}
bands_.reset(new int16_t*[num_proc_channels_ * kMaxNumBands]);
bands_f_.reset(new float*[num_proc_channels_ * kMaxNumBands]);
}
AudioBuffer::~AudioBuffer() {}
void AudioBuffer::CopyFrom(const float* const* data,
int samples_per_channel,
AudioProcessing::ChannelLayout layout) {
assert(samples_per_channel == input_samples_per_channel_);
assert(ChannelsFromLayout(layout) == num_input_channels_);
InitForNewData();
if (HasKeyboardChannel(layout)) {
keyboard_data_ = data[KeyboardChannelIndex(layout)];
}
// Downmix.
const float* const* data_ptr = data;
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
StereoToMono(data[0],
data[1],
input_buffer_->channel(0),
input_samples_per_channel_);
data_ptr = input_buffer_->channels();
}
// Resample.
if (input_samples_per_channel_ != proc_samples_per_channel_) {
for (int i = 0; i < num_proc_channels_; ++i) {
input_resamplers_[i]->Resample(data_ptr[i],
input_samples_per_channel_,
process_buffer_->channel(i),
proc_samples_per_channel_);
}
data_ptr = process_buffer_->channels();
}
// Convert to the S16 range.
for (int i = 0; i < num_proc_channels_; ++i) {
FloatToFloatS16(data_ptr[i], proc_samples_per_channel_,
channels_->fbuf()->channel(i));
}
}
void AudioBuffer::CopyTo(int samples_per_channel,
AudioProcessing::ChannelLayout layout,
float* const* data) {
assert(samples_per_channel == output_samples_per_channel_);
assert(ChannelsFromLayout(layout) == num_channels_);
// Convert to the float range.
float* const* data_ptr = data;
if (output_samples_per_channel_ != proc_samples_per_channel_) {
// Convert to an intermediate buffer for subsequent resampling.
data_ptr = process_buffer_->channels();
}
for (int i = 0; i < num_channels_; ++i) {
FloatS16ToFloat(channels_->fbuf()->channel(i), proc_samples_per_channel_,
data_ptr[i]);
}
// Resample.
if (output_samples_per_channel_ != proc_samples_per_channel_) {
for (int i = 0; i < num_channels_; ++i) {
output_resamplers_[i]->Resample(data_ptr[i],
proc_samples_per_channel_,
data[i],
output_samples_per_channel_);
}
}
}
void AudioBuffer::InitForNewData() {
keyboard_data_ = NULL;
mixed_low_pass_valid_ = false;
reference_copied_ = false;
activity_ = AudioFrame::kVadUnknown;
num_channels_ = num_proc_channels_;
}
const int16_t* AudioBuffer::data_const(int channel) const {
return channels_const()[channel];
}
int16_t* AudioBuffer::data(int channel) {
return channels()[channel];
}
const int16_t* const* AudioBuffer::channels_const() const {
return channels_->ibuf_const()->channels();
}
int16_t* const* AudioBuffer::channels() {
mixed_low_pass_valid_ = false;
return channels_->ibuf()->channels();
}
const int16_t* const* AudioBuffer::split_bands_const(int channel) const {
// This is necessary to make sure that the int16_t data is up to date in the
// IFChannelBuffer.
// TODO(aluebs): Having to depend on this to get the updated data is bug
// prone. One solution is to have ChannelBuffer track the bands as well.
for (int i = 0; i < kMaxNumBands; ++i) {
int16_t* const* channels =
const_cast<int16_t* const*>(split_channels_const(static_cast<Band>(i)));
bands_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
}
return &bands_[kMaxNumBands * channel];
}
int16_t* const* AudioBuffer::split_bands(int channel) {
mixed_low_pass_valid_ = false;
// This is necessary to make sure that the int16_t data is up to date and the
// float data is marked as invalid in the IFChannelBuffer.
for (int i = 0; i < kMaxNumBands; ++i) {
int16_t* const* channels = split_channels(static_cast<Band>(i));
bands_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
}
return &bands_[kMaxNumBands * channel];
}
const int16_t* const* AudioBuffer::split_channels_const(Band band) const {
if (split_channels_.size() > static_cast<size_t>(band)) {
return split_channels_[band]->ibuf_const()->channels();
} else {
return band == kBand0To8kHz ? channels_->ibuf_const()->channels() : NULL;
}
}
int16_t* const* AudioBuffer::split_channels(Band band) {
mixed_low_pass_valid_ = false;
if (split_channels_.size() > static_cast<size_t>(band)) {
return split_channels_[band]->ibuf()->channels();
} else {
return band == kBand0To8kHz ? channels_->ibuf()->channels() : NULL;
}
}
const float* AudioBuffer::data_const_f(int channel) const {
return channels_const_f()[channel];
}
float* AudioBuffer::data_f(int channel) {
return channels_f()[channel];
}
const float* const* AudioBuffer::channels_const_f() const {
return channels_->fbuf_const()->channels();
}
float* const* AudioBuffer::channels_f() {
mixed_low_pass_valid_ = false;
return channels_->fbuf()->channels();
}
const float* const* AudioBuffer::split_bands_const_f(int channel) const {
// This is necessary to make sure that the float data is up to date in the
// IFChannelBuffer.
for (int i = 0; i < kMaxNumBands; ++i) {
float* const* channels =
const_cast<float* const*>(split_channels_const_f(static_cast<Band>(i)));
bands_f_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
}
return &bands_f_[kMaxNumBands * channel];
}
float* const* AudioBuffer::split_bands_f(int channel) {
mixed_low_pass_valid_ = false;
// This is necessary to make sure that the float data is up to date and the
// int16_t data is marked as invalid in the IFChannelBuffer.
for (int i = 0; i < kMaxNumBands; ++i) {
float* const* channels = split_channels_f(static_cast<Band>(i));
bands_f_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
}
return &bands_f_[kMaxNumBands * channel];
}
const float* const* AudioBuffer::split_channels_const_f(Band band) const {
if (split_channels_.size() > static_cast<size_t>(band)) {
return split_channels_[band]->fbuf_const()->channels();
} else {
return band == kBand0To8kHz ? channels_->fbuf_const()->channels() : NULL;
}
}
float* const* AudioBuffer::split_channels_f(Band band) {
mixed_low_pass_valid_ = false;
if (split_channels_.size() > static_cast<size_t>(band)) {
return split_channels_[band]->fbuf()->channels();
} else {
return band == kBand0To8kHz ? channels_->fbuf()->channels() : NULL;
}
}
const int16_t* AudioBuffer::mixed_low_pass_data() {
// Currently only mixing stereo to mono is supported.
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
if (num_proc_channels_ == 1) {
return split_bands_const(0)[kBand0To8kHz];
}
if (!mixed_low_pass_valid_) {
if (!mixed_low_pass_channels_.get()) {
mixed_low_pass_channels_.reset(
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
}
StereoToMono(split_bands_const(0)[kBand0To8kHz],
split_bands_const(1)[kBand0To8kHz],
mixed_low_pass_channels_->data(),
samples_per_split_channel_);
mixed_low_pass_valid_ = true;
}
return mixed_low_pass_channels_->data();
}
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
if (!reference_copied_) {
return NULL;
}
return low_pass_reference_channels_->channel(channel);
}
const float* AudioBuffer::keyboard_data() const {
return keyboard_data_;
}
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
activity_ = activity;
}
AudioFrame::VADActivity AudioBuffer::activity() const {
return activity_;
}
int AudioBuffer::num_channels() const {
return num_channels_;
}
void AudioBuffer::set_num_channels(int num_channels) {
num_channels_ = num_channels;
}
int AudioBuffer::samples_per_channel() const {
return proc_samples_per_channel_;
}
int AudioBuffer::samples_per_split_channel() const {
return samples_per_split_channel_;
}
int AudioBuffer::samples_per_keyboard_channel() const {
// We don't resample the keyboard channel.
return input_samples_per_channel_;
}
int AudioBuffer::num_bands() const {
return num_bands_;
}
// TODO(andrew): Do deinterleaving and mixing in one step?
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
assert(proc_samples_per_channel_ == input_samples_per_channel_);
assert(frame->num_channels_ == num_input_channels_);
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
InitForNewData();
activity_ = frame->vad_activity_;
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
// Downmix directly; no explicit deinterleaving needed.
int16_t* downmixed = channels_->ibuf()->channel(0);
for (int i = 0; i < input_samples_per_channel_; ++i) {
downmixed[i] = (frame->data_[i * 2] + frame->data_[i * 2 + 1]) / 2;
}
} else {
assert(num_proc_channels_ == num_input_channels_);
int16_t* interleaved = frame->data_;
for (int i = 0; i < num_proc_channels_; ++i) {
int16_t* deinterleaved = channels_->ibuf()->channel(i);
int interleaved_idx = i;
for (int j = 0; j < proc_samples_per_channel_; ++j) {
deinterleaved[j] = interleaved[interleaved_idx];
interleaved_idx += num_proc_channels_;
}
}
}
}
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
assert(proc_samples_per_channel_ == output_samples_per_channel_);
assert(num_channels_ == num_input_channels_);
assert(frame->num_channels_ == num_channels_);
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
frame->vad_activity_ = activity_;
if (!data_changed) {
return;
}
int16_t* interleaved = frame->data_;
for (int i = 0; i < num_channels_; i++) {
int16_t* deinterleaved = channels_->ibuf()->channel(i);
int interleaved_idx = i;
for (int j = 0; j < proc_samples_per_channel_; j++) {
interleaved[interleaved_idx] = deinterleaved[j];
interleaved_idx += num_channels_;
}
}
}
void AudioBuffer::CopyLowPassToReference() {
reference_copied_ = true;
if (!low_pass_reference_channels_.get() ||
low_pass_reference_channels_->num_channels() != num_channels_) {
low_pass_reference_channels_.reset(
new ChannelBuffer<int16_t>(samples_per_split_channel_,
num_proc_channels_));
}
for (int i = 0; i < num_proc_channels_; i++) {
low_pass_reference_channels_->CopyFrom(split_bands_const(i)[kBand0To8kHz],
i);
}
}
void AudioBuffer::SplitIntoFrequencyBands() {
splitting_filter_->Analysis(channels_.get(),
split_channels_.get());
}
void AudioBuffer::MergeFrequencyBands() {
splitting_filter_->Synthesis(split_channels_.get(),
channels_.get());
}
} // namespace webrtc
|