File: audio_processing_impl.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (1056 lines) | stat: -rw-r--r-- 35,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/modules/audio_processing/audio_processing_impl.h"

#include <assert.h>

#include "webrtc/base/platform_file.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/agc/agc_manager_direct.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/beamformer/beamformer.h"
#include "webrtc/modules/audio_processing/channel_buffer.h"
#include "webrtc/modules/audio_processing/common.h"
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include "webrtc/modules/audio_processing/echo_control_mobile_impl.h"
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/modules/audio_processing/high_pass_filter_impl.h"
#include "webrtc/modules/audio_processing/level_estimator_impl.h"
#include "webrtc/modules/audio_processing/noise_suppression_impl.h"
#include "webrtc/modules/audio_processing/processing_component.h"
#include "webrtc/modules/audio_processing/transient/transient_suppressor.h"
#include "webrtc/modules/audio_processing/voice_detection_impl.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/compile_assert.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/file_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Files generated at build-time by the protobuf compiler.
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#else
#include "webrtc/audio_processing/debug.pb.h"
#endif
#endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP

#define RETURN_ON_ERR(expr)  \
  do {                       \
    int err = expr;          \
    if (err != kNoError) {   \
      return err;            \
    }                        \
  } while (0)

namespace webrtc {

// Throughout webrtc, it's assumed that success is represented by zero.
COMPILE_ASSERT(AudioProcessing::kNoError == 0, no_error_must_be_zero);

// This class has two main functionalities:
//
// 1) It is returned instead of the real GainControl after the new AGC has been
//    enabled in order to prevent an outside user from overriding compression
//    settings. It doesn't do anything in its implementation, except for
//    delegating the const methods and Enable calls to the real GainControl, so
//    AGC can still be disabled.
//
// 2) It is injected into AgcManagerDirect and implements volume callbacks for
//    getting and setting the volume level. It just caches this value to be used
//    in VoiceEngine later.
class GainControlForNewAgc : public GainControl, public VolumeCallbacks {
 public:
  explicit GainControlForNewAgc(GainControlImpl* gain_control)
      : real_gain_control_(gain_control),
        volume_(0) {
  }

  // GainControl implementation.
  virtual int Enable(bool enable) OVERRIDE {
    return real_gain_control_->Enable(enable);
  }
  virtual bool is_enabled() const OVERRIDE {
    return real_gain_control_->is_enabled();
  }
  virtual int set_stream_analog_level(int level) OVERRIDE {
    volume_ = level;
    return AudioProcessing::kNoError;
  }
  virtual int stream_analog_level() OVERRIDE {
    return volume_;
  }
  virtual int set_mode(Mode mode) OVERRIDE { return AudioProcessing::kNoError; }
  virtual Mode mode() const OVERRIDE { return GainControl::kAdaptiveAnalog; }
  virtual int set_target_level_dbfs(int level) OVERRIDE {
    return AudioProcessing::kNoError;
  }
  virtual int target_level_dbfs() const OVERRIDE {
    return real_gain_control_->target_level_dbfs();
  }
  virtual int set_compression_gain_db(int gain) OVERRIDE {
    return AudioProcessing::kNoError;
  }
  virtual int compression_gain_db() const OVERRIDE {
    return real_gain_control_->compression_gain_db();
  }
  virtual int enable_limiter(bool enable) OVERRIDE {
    return AudioProcessing::kNoError;
  }
  virtual bool is_limiter_enabled() const OVERRIDE {
    return real_gain_control_->is_limiter_enabled();
  }
  virtual int set_analog_level_limits(int minimum,
                                      int maximum) OVERRIDE {
    return AudioProcessing::kNoError;
  }
  virtual int analog_level_minimum() const OVERRIDE {
    return real_gain_control_->analog_level_minimum();
  }
  virtual int analog_level_maximum() const OVERRIDE {
    return real_gain_control_->analog_level_maximum();
  }
  virtual bool stream_is_saturated() const OVERRIDE {
    return real_gain_control_->stream_is_saturated();
  }

  // VolumeCallbacks implementation.
  virtual void SetMicVolume(int volume) OVERRIDE {
    volume_ = volume;
  }
  virtual int GetMicVolume() OVERRIDE {
    return volume_;
  }

 private:
  GainControl* real_gain_control_;
  int volume_;
};

AudioProcessing* AudioProcessing::Create(int id) {
  return Create();
}

AudioProcessing* AudioProcessing::Create() {
  Config config;
  return Create(config);
}

AudioProcessing* AudioProcessing::Create(const Config& config) {
  AudioProcessingImpl* apm = new AudioProcessingImpl(config);
  if (apm->Initialize() != kNoError) {
    delete apm;
    apm = NULL;
  }

  return apm;
}

AudioProcessingImpl::AudioProcessingImpl(const Config& config)
    : echo_cancellation_(NULL),
      echo_control_mobile_(NULL),
      gain_control_(NULL),
      high_pass_filter_(NULL),
      level_estimator_(NULL),
      noise_suppression_(NULL),
      voice_detection_(NULL),
      crit_(CriticalSectionWrapper::CreateCriticalSection()),
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
      debug_file_(FileWrapper::Create()),
      event_msg_(new audioproc::Event()),
#endif
      fwd_in_format_(kSampleRate16kHz, 1),
      fwd_proc_format_(kSampleRate16kHz),
      fwd_out_format_(kSampleRate16kHz, 1),
      rev_in_format_(kSampleRate16kHz, 1),
      rev_proc_format_(kSampleRate16kHz, 1),
      split_rate_(kSampleRate16kHz),
      stream_delay_ms_(0),
      delay_offset_ms_(0),
      was_stream_delay_set_(false),
      output_will_be_muted_(false),
      key_pressed_(false),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
      use_new_agc_(false),
#else
      use_new_agc_(config.Get<ExperimentalAgc>().enabled),
#endif
      transient_suppressor_enabled_(config.Get<ExperimentalNs>().enabled),
      beamformer_enabled_(config.Get<Beamforming>().enabled),
      array_geometry_(config.Get<Beamforming>().array_geometry) {
  echo_cancellation_ = new EchoCancellationImpl(this, crit_);
  component_list_.push_back(echo_cancellation_);

  echo_control_mobile_ = new EchoControlMobileImpl(this, crit_);
  component_list_.push_back(echo_control_mobile_);

  gain_control_ = new GainControlImpl(this, crit_);
  component_list_.push_back(gain_control_);

  high_pass_filter_ = new HighPassFilterImpl(this, crit_);
  component_list_.push_back(high_pass_filter_);

  level_estimator_ = new LevelEstimatorImpl(this, crit_);
  component_list_.push_back(level_estimator_);

  noise_suppression_ = new NoiseSuppressionImpl(this, crit_);
  component_list_.push_back(noise_suppression_);

  voice_detection_ = new VoiceDetectionImpl(this, crit_);
  component_list_.push_back(voice_detection_);

  gain_control_for_new_agc_.reset(new GainControlForNewAgc(gain_control_));

  SetExtraOptions(config);
}

AudioProcessingImpl::~AudioProcessingImpl() {
  {
    CriticalSectionScoped crit_scoped(crit_);
    // Depends on gain_control_ and gain_control_for_new_agc_.
    agc_manager_.reset();
    // Depends on gain_control_.
    gain_control_for_new_agc_.reset();
    while (!component_list_.empty()) {
      ProcessingComponent* component = component_list_.front();
      component->Destroy();
      delete component;
      component_list_.pop_front();
    }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
    if (debug_file_->Open()) {
      debug_file_->CloseFile();
    }
#endif
  }
  delete crit_;
  crit_ = NULL;
}

int AudioProcessingImpl::Initialize() {
  CriticalSectionScoped crit_scoped(crit_);
  return InitializeLocked();
}

int AudioProcessingImpl::set_sample_rate_hz(int rate) {
  CriticalSectionScoped crit_scoped(crit_);
  return InitializeLocked(rate,
                          rate,
                          rev_in_format_.rate(),
                          fwd_in_format_.num_channels(),
                          fwd_out_format_.num_channels(),
                          rev_in_format_.num_channels());
}

int AudioProcessingImpl::Initialize(int input_sample_rate_hz,
                                    int output_sample_rate_hz,
                                    int reverse_sample_rate_hz,
                                    ChannelLayout input_layout,
                                    ChannelLayout output_layout,
                                    ChannelLayout reverse_layout) {
  CriticalSectionScoped crit_scoped(crit_);
  return InitializeLocked(input_sample_rate_hz,
                          output_sample_rate_hz,
                          reverse_sample_rate_hz,
                          ChannelsFromLayout(input_layout),
                          ChannelsFromLayout(output_layout),
                          ChannelsFromLayout(reverse_layout));
}

int AudioProcessingImpl::InitializeLocked() {
  const int fwd_audio_buffer_channels = beamformer_enabled_ ?
                                        fwd_in_format_.num_channels() :
                                        fwd_out_format_.num_channels();
  render_audio_.reset(new AudioBuffer(rev_in_format_.samples_per_channel(),
                                      rev_in_format_.num_channels(),
                                      rev_proc_format_.samples_per_channel(),
                                      rev_proc_format_.num_channels(),
                                      rev_proc_format_.samples_per_channel()));
  capture_audio_.reset(new AudioBuffer(fwd_in_format_.samples_per_channel(),
                                       fwd_in_format_.num_channels(),
                                       fwd_proc_format_.samples_per_channel(),
                                       fwd_audio_buffer_channels,
                                       fwd_out_format_.samples_per_channel()));

  // Initialize all components.
  std::list<ProcessingComponent*>::iterator it;
  for (it = component_list_.begin(); it != component_list_.end(); ++it) {
    int err = (*it)->Initialize();
    if (err != kNoError) {
      return err;
    }
  }

  int err = InitializeExperimentalAgc();
  if (err != kNoError) {
    return err;
  }

  err = InitializeTransient();
  if (err != kNoError) {
    return err;
  }

  InitializeBeamformer();

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    int err = WriteInitMessage();
    if (err != kNoError) {
      return err;
    }
  }
#endif

  return kNoError;
}

int AudioProcessingImpl::InitializeLocked(int input_sample_rate_hz,
                                          int output_sample_rate_hz,
                                          int reverse_sample_rate_hz,
                                          int num_input_channels,
                                          int num_output_channels,
                                          int num_reverse_channels) {
  if (input_sample_rate_hz <= 0 ||
      output_sample_rate_hz <= 0 ||
      reverse_sample_rate_hz <= 0) {
    return kBadSampleRateError;
  }
  if (num_output_channels > num_input_channels) {
    return kBadNumberChannelsError;
  }
  // Only mono and stereo supported currently.
  if (num_input_channels > 2 || num_input_channels < 1 ||
      num_output_channels > 2 || num_output_channels < 1 ||
      num_reverse_channels > 2 || num_reverse_channels < 1) {
    return kBadNumberChannelsError;
  }

  fwd_in_format_.set(input_sample_rate_hz, num_input_channels);
  fwd_out_format_.set(output_sample_rate_hz, num_output_channels);
  rev_in_format_.set(reverse_sample_rate_hz, num_reverse_channels);

  // We process at the closest native rate >= min(input rate, output rate)...
  int min_proc_rate = std::min(fwd_in_format_.rate(), fwd_out_format_.rate());
  int fwd_proc_rate;
  if (min_proc_rate > kSampleRate16kHz) {
    fwd_proc_rate = kSampleRate32kHz;
  } else if (min_proc_rate > kSampleRate8kHz) {
    fwd_proc_rate = kSampleRate16kHz;
  } else {
    fwd_proc_rate = kSampleRate8kHz;
  }
  // ...with one exception.
  if (echo_control_mobile_->is_enabled() && min_proc_rate > kSampleRate16kHz) {
    fwd_proc_rate = kSampleRate16kHz;
  }

  fwd_proc_format_.set(fwd_proc_rate);

  // We normally process the reverse stream at 16 kHz. Unless...
  int rev_proc_rate = kSampleRate16kHz;
  if (fwd_proc_format_.rate() == kSampleRate8kHz) {
    // ...the forward stream is at 8 kHz.
    rev_proc_rate = kSampleRate8kHz;
  } else {
    if (rev_in_format_.rate() == kSampleRate32kHz) {
      // ...or the input is at 32 kHz, in which case we use the splitting
      // filter rather than the resampler.
      rev_proc_rate = kSampleRate32kHz;
    }
  }

  // Always downmix the reverse stream to mono for analysis. This has been
  // demonstrated to work well for AEC in most practical scenarios.
  rev_proc_format_.set(rev_proc_rate, 1);

  if (fwd_proc_format_.rate() == kSampleRate32kHz ||
      fwd_proc_format_.rate() == kSampleRate48kHz) {
    split_rate_ = kSampleRate16kHz;
  } else {
    split_rate_ = fwd_proc_format_.rate();
  }

  return InitializeLocked();
}

// Calls InitializeLocked() if any of the audio parameters have changed from
// their current values.
int AudioProcessingImpl::MaybeInitializeLocked(int input_sample_rate_hz,
                                               int output_sample_rate_hz,
                                               int reverse_sample_rate_hz,
                                               int num_input_channels,
                                               int num_output_channels,
                                               int num_reverse_channels) {
  if (input_sample_rate_hz == fwd_in_format_.rate() &&
      output_sample_rate_hz == fwd_out_format_.rate() &&
      reverse_sample_rate_hz == rev_in_format_.rate() &&
      num_input_channels == fwd_in_format_.num_channels() &&
      num_output_channels == fwd_out_format_.num_channels() &&
      num_reverse_channels == rev_in_format_.num_channels()) {
    return kNoError;
  }
  if (beamformer_enabled_ &&
      (static_cast<size_t>(num_input_channels) != array_geometry_.size() ||
       num_output_channels > 1)) {
    return kBadNumberChannelsError;
  }
  return InitializeLocked(input_sample_rate_hz,
                          output_sample_rate_hz,
                          reverse_sample_rate_hz,
                          num_input_channels,
                          num_output_channels,
                          num_reverse_channels);
}

void AudioProcessingImpl::SetExtraOptions(const Config& config) {
  CriticalSectionScoped crit_scoped(crit_);
  std::list<ProcessingComponent*>::iterator it;
  for (it = component_list_.begin(); it != component_list_.end(); ++it)
    (*it)->SetExtraOptions(config);

  if (transient_suppressor_enabled_ != config.Get<ExperimentalNs>().enabled) {
    transient_suppressor_enabled_ = config.Get<ExperimentalNs>().enabled;
    InitializeTransient();
  }
}

int AudioProcessingImpl::input_sample_rate_hz() const {
  CriticalSectionScoped crit_scoped(crit_);
  return fwd_in_format_.rate();
}

int AudioProcessingImpl::sample_rate_hz() const {
  CriticalSectionScoped crit_scoped(crit_);
  return fwd_in_format_.rate();
}

int AudioProcessingImpl::proc_sample_rate_hz() const {
  return fwd_proc_format_.rate();
}

int AudioProcessingImpl::proc_split_sample_rate_hz() const {
  return split_rate_;
}

int AudioProcessingImpl::num_reverse_channels() const {
  return rev_proc_format_.num_channels();
}

int AudioProcessingImpl::num_input_channels() const {
  return fwd_in_format_.num_channels();
}

int AudioProcessingImpl::num_output_channels() const {
  return fwd_out_format_.num_channels();
}

void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
  output_will_be_muted_ = muted;
  CriticalSectionScoped lock(crit_);
  if (agc_manager_.get()) {
    agc_manager_->SetCaptureMuted(output_will_be_muted_);
  }
}

bool AudioProcessingImpl::output_will_be_muted() const {
  return output_will_be_muted_;
}

int AudioProcessingImpl::ProcessStream(const float* const* src,
                                       int samples_per_channel,
                                       int input_sample_rate_hz,
                                       ChannelLayout input_layout,
                                       int output_sample_rate_hz,
                                       ChannelLayout output_layout,
                                       float* const* dest) {
  CriticalSectionScoped crit_scoped(crit_);
  if (!src || !dest) {
    return kNullPointerError;
  }

  RETURN_ON_ERR(MaybeInitializeLocked(input_sample_rate_hz,
                                      output_sample_rate_hz,
                                      rev_in_format_.rate(),
                                      ChannelsFromLayout(input_layout),
                                      ChannelsFromLayout(output_layout),
                                      rev_in_format_.num_channels()));
  if (samples_per_channel != fwd_in_format_.samples_per_channel()) {
    return kBadDataLengthError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    event_msg_->set_type(audioproc::Event::STREAM);
    audioproc::Stream* msg = event_msg_->mutable_stream();
    const size_t channel_size =
        sizeof(float) * fwd_in_format_.samples_per_channel();
    for (int i = 0; i < fwd_in_format_.num_channels(); ++i)
      msg->add_input_channel(src[i], channel_size);
  }
#endif

  capture_audio_->CopyFrom(src, samples_per_channel, input_layout);
  RETURN_ON_ERR(ProcessStreamLocked());
  if (output_copy_needed(is_data_processed())) {
    capture_audio_->CopyTo(fwd_out_format_.samples_per_channel(),
                           output_layout,
                           dest);
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    audioproc::Stream* msg = event_msg_->mutable_stream();
    const size_t channel_size =
        sizeof(float) * fwd_out_format_.samples_per_channel();
    for (int i = 0; i < fwd_out_format_.num_channels(); ++i)
      msg->add_output_channel(dest[i], channel_size);
    RETURN_ON_ERR(WriteMessageToDebugFile());
  }
#endif

  return kNoError;
}

int AudioProcessingImpl::ProcessStream(AudioFrame* frame) {
  CriticalSectionScoped crit_scoped(crit_);
  if (!frame) {
    return kNullPointerError;
  }
  // Must be a native rate.
  if (frame->sample_rate_hz_ != kSampleRate8kHz &&
      frame->sample_rate_hz_ != kSampleRate16kHz &&
      frame->sample_rate_hz_ != kSampleRate32kHz &&
      frame->sample_rate_hz_ != kSampleRate48kHz) {
    return kBadSampleRateError;
  }
  if (echo_control_mobile_->is_enabled() &&
      frame->sample_rate_hz_ > kSampleRate16kHz) {
    LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates";
    return kUnsupportedComponentError;
  }

  // TODO(ajm): The input and output rates and channels are currently
  // constrained to be identical in the int16 interface.
  RETURN_ON_ERR(MaybeInitializeLocked(frame->sample_rate_hz_,
                                      frame->sample_rate_hz_,
                                      rev_in_format_.rate(),
                                      frame->num_channels_,
                                      frame->num_channels_,
                                      rev_in_format_.num_channels()));
  if (frame->samples_per_channel_ != fwd_in_format_.samples_per_channel()) {
    return kBadDataLengthError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    event_msg_->set_type(audioproc::Event::STREAM);
    audioproc::Stream* msg = event_msg_->mutable_stream();
    const size_t data_size = sizeof(int16_t) *
                             frame->samples_per_channel_ *
                             frame->num_channels_;
    msg->set_input_data(frame->data_, data_size);
  }
#endif

  capture_audio_->DeinterleaveFrom(frame);
  RETURN_ON_ERR(ProcessStreamLocked());
  capture_audio_->InterleaveTo(frame, output_copy_needed(is_data_processed()));

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    audioproc::Stream* msg = event_msg_->mutable_stream();
    const size_t data_size = sizeof(int16_t) *
                             frame->samples_per_channel_ *
                             frame->num_channels_;
    msg->set_output_data(frame->data_, data_size);
    RETURN_ON_ERR(WriteMessageToDebugFile());
  }
#endif

  return kNoError;
}


int AudioProcessingImpl::ProcessStreamLocked() {
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    audioproc::Stream* msg = event_msg_->mutable_stream();
    msg->set_delay(stream_delay_ms_);
    msg->set_drift(echo_cancellation_->stream_drift_samples());
    msg->set_level(gain_control_->stream_analog_level());
    msg->set_keypress(key_pressed_);
  }
#endif

  AudioBuffer* ca = capture_audio_.get();  // For brevity.
  if (use_new_agc_ && gain_control_->is_enabled()) {
    agc_manager_->AnalyzePreProcess(ca->data(0),
                                    ca->num_channels(),
                                    fwd_proc_format_.samples_per_channel());
  }

  bool data_processed = is_data_processed();
  if (analysis_needed(data_processed)) {
    ca->SplitIntoFrequencyBands();
  }

#ifdef WEBRTC_BEAMFORMER
  if (beamformer_enabled_) {
    beamformer_->ProcessChunk(ca->split_channels_const_f(kBand0To8kHz),
                              ca->split_channels_const_f(kBand8To16kHz),
                              ca->num_channels(),
                              ca->samples_per_split_channel(),
                              ca->split_channels_f(kBand0To8kHz),
                              ca->split_channels_f(kBand8To16kHz));
    ca->set_num_channels(1);
  }
#endif

  RETURN_ON_ERR(high_pass_filter_->ProcessCaptureAudio(ca));
  RETURN_ON_ERR(gain_control_->AnalyzeCaptureAudio(ca));
  RETURN_ON_ERR(noise_suppression_->AnalyzeCaptureAudio(ca));
  RETURN_ON_ERR(echo_cancellation_->ProcessCaptureAudio(ca));

  if (echo_control_mobile_->is_enabled() && noise_suppression_->is_enabled()) {
    ca->CopyLowPassToReference();
  }
  RETURN_ON_ERR(noise_suppression_->ProcessCaptureAudio(ca));
  RETURN_ON_ERR(echo_control_mobile_->ProcessCaptureAudio(ca));
  RETURN_ON_ERR(voice_detection_->ProcessCaptureAudio(ca));

  if (use_new_agc_ && gain_control_->is_enabled()) {
    agc_manager_->Process(ca->split_bands_const(0)[kBand0To8kHz],
                          ca->samples_per_split_channel(),
                          split_rate_);
  }
  RETURN_ON_ERR(gain_control_->ProcessCaptureAudio(ca));

  if (synthesis_needed(data_processed)) {
    ca->MergeFrequencyBands();
  }

  // TODO(aluebs): Investigate if the transient suppression placement should be
  // before or after the AGC.
  if (transient_suppressor_enabled_) {
    float voice_probability =
        agc_manager_.get() ? agc_manager_->voice_probability() : 1.f;

    transient_suppressor_->Suppress(ca->data_f(0),
                                    ca->samples_per_channel(),
                                    ca->num_channels(),
                                    ca->split_bands_const_f(0)[kBand0To8kHz],
                                    ca->samples_per_split_channel(),
                                    ca->keyboard_data(),
                                    ca->samples_per_keyboard_channel(),
                                    voice_probability,
                                    key_pressed_);
  }

  // The level estimator operates on the recombined data.
  RETURN_ON_ERR(level_estimator_->ProcessStream(ca));

  was_stream_delay_set_ = false;
  return kNoError;
}

int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data,
                                              int samples_per_channel,
                                              int sample_rate_hz,
                                              ChannelLayout layout) {
  CriticalSectionScoped crit_scoped(crit_);
  if (data == NULL) {
    return kNullPointerError;
  }

  const int num_channels = ChannelsFromLayout(layout);
  RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(),
                                      fwd_out_format_.rate(),
                                      sample_rate_hz,
                                      fwd_in_format_.num_channels(),
                                      fwd_out_format_.num_channels(),
                                      num_channels));
  if (samples_per_channel != rev_in_format_.samples_per_channel()) {
    return kBadDataLengthError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
    audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
    const size_t channel_size =
        sizeof(float) * rev_in_format_.samples_per_channel();
    for (int i = 0; i < num_channels; ++i)
      msg->add_channel(data[i], channel_size);
    RETURN_ON_ERR(WriteMessageToDebugFile());
  }
#endif

  render_audio_->CopyFrom(data, samples_per_channel, layout);
  return AnalyzeReverseStreamLocked();
}

int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) {
  CriticalSectionScoped crit_scoped(crit_);
  if (frame == NULL) {
    return kNullPointerError;
  }
  // Must be a native rate.
  if (frame->sample_rate_hz_ != kSampleRate8kHz &&
      frame->sample_rate_hz_ != kSampleRate16kHz &&
      frame->sample_rate_hz_ != kSampleRate32kHz &&
      frame->sample_rate_hz_ != kSampleRate48kHz) {
    return kBadSampleRateError;
  }
  // This interface does not tolerate different forward and reverse rates.
  if (frame->sample_rate_hz_ != fwd_in_format_.rate()) {
    return kBadSampleRateError;
  }

  RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(),
                                      fwd_out_format_.rate(),
                                      frame->sample_rate_hz_,
                                      fwd_in_format_.num_channels(),
                                      fwd_in_format_.num_channels(),
                                      frame->num_channels_));
  if (frame->samples_per_channel_ != rev_in_format_.samples_per_channel()) {
    return kBadDataLengthError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  if (debug_file_->Open()) {
    event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
    audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
    const size_t data_size = sizeof(int16_t) *
                             frame->samples_per_channel_ *
                             frame->num_channels_;
    msg->set_data(frame->data_, data_size);
    RETURN_ON_ERR(WriteMessageToDebugFile());
  }
#endif

  render_audio_->DeinterleaveFrom(frame);
  return AnalyzeReverseStreamLocked();
}

int AudioProcessingImpl::AnalyzeReverseStreamLocked() {
  AudioBuffer* ra = render_audio_.get();  // For brevity.
  if (rev_proc_format_.rate() == kSampleRate32kHz) {
    ra->SplitIntoFrequencyBands();
  }

  RETURN_ON_ERR(echo_cancellation_->ProcessRenderAudio(ra));
  RETURN_ON_ERR(echo_control_mobile_->ProcessRenderAudio(ra));
  if (!use_new_agc_) {
    RETURN_ON_ERR(gain_control_->ProcessRenderAudio(ra));
  }

  return kNoError;
}

int AudioProcessingImpl::set_stream_delay_ms(int delay) {
  Error retval = kNoError;
  was_stream_delay_set_ = true;
  delay += delay_offset_ms_;

  if (delay < 0) {
    delay = 0;
    retval = kBadStreamParameterWarning;
  }

  // TODO(ajm): the max is rather arbitrarily chosen; investigate.
  if (delay > 500) {
    delay = 500;
    retval = kBadStreamParameterWarning;
  }

  stream_delay_ms_ = delay;
  return retval;
}

int AudioProcessingImpl::stream_delay_ms() const {
  return stream_delay_ms_;
}

bool AudioProcessingImpl::was_stream_delay_set() const {
  return was_stream_delay_set_;
}

void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
  key_pressed_ = key_pressed;
}

bool AudioProcessingImpl::stream_key_pressed() const {
  return key_pressed_;
}

void AudioProcessingImpl::set_delay_offset_ms(int offset) {
  CriticalSectionScoped crit_scoped(crit_);
  delay_offset_ms_ = offset;
}

int AudioProcessingImpl::delay_offset_ms() const {
  return delay_offset_ms_;
}

int AudioProcessingImpl::StartDebugRecording(
    const char filename[AudioProcessing::kMaxFilenameSize]) {
  CriticalSectionScoped crit_scoped(crit_);
  assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize);

  if (filename == NULL) {
    return kNullPointerError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  // Stop any ongoing recording.
  if (debug_file_->Open()) {
    if (debug_file_->CloseFile() == -1) {
      return kFileError;
    }
  }

  if (debug_file_->OpenFile(filename, false) == -1) {
    debug_file_->CloseFile();
    return kFileError;
  }

  int err = WriteInitMessage();
  if (err != kNoError) {
    return err;
  }
  return kNoError;
#else
  return kUnsupportedFunctionError;
#endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP
}

int AudioProcessingImpl::StartDebugRecording(FILE* handle) {
  CriticalSectionScoped crit_scoped(crit_);

  if (handle == NULL) {
    return kNullPointerError;
  }

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  // Stop any ongoing recording.
  if (debug_file_->Open()) {
    if (debug_file_->CloseFile() == -1) {
      return kFileError;
    }
  }

  if (debug_file_->OpenFromFileHandle(handle, true, false) == -1) {
    return kFileError;
  }

  int err = WriteInitMessage();
  if (err != kNoError) {
    return err;
  }
  return kNoError;
#else
  return kUnsupportedFunctionError;
#endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP
}

int AudioProcessingImpl::StartDebugRecordingForPlatformFile(
    rtc::PlatformFile handle) {
  FILE* stream = rtc::FdopenPlatformFileForWriting(handle);
  return StartDebugRecording(stream);
}

int AudioProcessingImpl::StopDebugRecording() {
  CriticalSectionScoped crit_scoped(crit_);

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
  // We just return if recording hasn't started.
  if (debug_file_->Open()) {
    if (debug_file_->CloseFile() == -1) {
      return kFileError;
    }
  }
  return kNoError;
#else
  return kUnsupportedFunctionError;
#endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP
}

EchoCancellation* AudioProcessingImpl::echo_cancellation() const {
  return echo_cancellation_;
}

EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const {
  return echo_control_mobile_;
}

GainControl* AudioProcessingImpl::gain_control() const {
  if (use_new_agc_) {
    return gain_control_for_new_agc_.get();
  }
  return gain_control_;
}

HighPassFilter* AudioProcessingImpl::high_pass_filter() const {
  return high_pass_filter_;
}

LevelEstimator* AudioProcessingImpl::level_estimator() const {
  return level_estimator_;
}

NoiseSuppression* AudioProcessingImpl::noise_suppression() const {
  return noise_suppression_;
}

VoiceDetection* AudioProcessingImpl::voice_detection() const {
  return voice_detection_;
}

bool AudioProcessingImpl::is_data_processed() const {
  if (beamformer_enabled_) {
    return true;
  }

  int enabled_count = 0;
  std::list<ProcessingComponent*>::const_iterator it;
  for (it = component_list_.begin(); it != component_list_.end(); it++) {
    if ((*it)->is_component_enabled()) {
      enabled_count++;
    }
  }

  // Data is unchanged if no components are enabled, or if only level_estimator_
  // or voice_detection_ is enabled.
  if (enabled_count == 0) {
    return false;
  } else if (enabled_count == 1) {
    if (level_estimator_->is_enabled() || voice_detection_->is_enabled()) {
      return false;
    }
  } else if (enabled_count == 2) {
    if (level_estimator_->is_enabled() && voice_detection_->is_enabled()) {
      return false;
    }
  }
  return true;
}

bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const {
  // Check if we've upmixed or downmixed the audio.
  return ((fwd_out_format_.num_channels() != fwd_in_format_.num_channels()) ||
          is_data_processed || transient_suppressor_enabled_);
}

bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const {
  return (is_data_processed && (fwd_proc_format_.rate() == kSampleRate32kHz ||
          fwd_proc_format_.rate() == kSampleRate48kHz));
}

bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const {
  if (!is_data_processed && !voice_detection_->is_enabled() &&
      !transient_suppressor_enabled_) {
    // Only level_estimator_ is enabled.
    return false;
  } else if (fwd_proc_format_.rate() == kSampleRate32kHz ||
             fwd_proc_format_.rate() == kSampleRate48kHz) {
    // Something besides level_estimator_ is enabled, and we have super-wb.
    return true;
  }
  return false;
}

int AudioProcessingImpl::InitializeExperimentalAgc() {
  if (use_new_agc_) {
    if (!agc_manager_.get()) {
      agc_manager_.reset(
          new AgcManagerDirect(gain_control_, gain_control_for_new_agc_.get()));
    }
    agc_manager_->Initialize();
    agc_manager_->SetCaptureMuted(output_will_be_muted_);
  }
  return kNoError;
}

int AudioProcessingImpl::InitializeTransient() {
  if (transient_suppressor_enabled_) {
    if (!transient_suppressor_.get()) {
      transient_suppressor_.reset(new TransientSuppressor());
    }
    transient_suppressor_->Initialize(fwd_proc_format_.rate(),
                                      split_rate_,
                                      fwd_out_format_.num_channels());
  }
  return kNoError;
}

void AudioProcessingImpl::InitializeBeamformer() {
  if (beamformer_enabled_) {
#ifdef WEBRTC_BEAMFORMER
    beamformer_.reset(new Beamformer(kChunkSizeMs,
                                     split_rate_,
                                     array_geometry_));
#else
    assert(false);
#endif
  }
}

#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
int AudioProcessingImpl::WriteMessageToDebugFile() {
  int32_t size = event_msg_->ByteSize();
  if (size <= 0) {
    return kUnspecifiedError;
  }
#if defined(WEBRTC_ARCH_BIG_ENDIAN)
  // TODO(ajm): Use little-endian "on the wire". For the moment, we can be
  //            pretty safe in assuming little-endian.
#endif

  if (!event_msg_->SerializeToString(&event_str_)) {
    return kUnspecifiedError;
  }

  // Write message preceded by its size.
  if (!debug_file_->Write(&size, sizeof(int32_t))) {
    return kFileError;
  }
  if (!debug_file_->Write(event_str_.data(), event_str_.length())) {
    return kFileError;
  }

  event_msg_->Clear();

  return kNoError;
}

int AudioProcessingImpl::WriteInitMessage() {
  event_msg_->set_type(audioproc::Event::INIT);
  audioproc::Init* msg = event_msg_->mutable_init();
  msg->set_sample_rate(fwd_in_format_.rate());
  msg->set_num_input_channels(fwd_in_format_.num_channels());
  msg->set_num_output_channels(fwd_out_format_.num_channels());
  msg->set_num_reverse_channels(rev_in_format_.num_channels());
  msg->set_reverse_sample_rate(rev_in_format_.rate());
  msg->set_output_sample_rate(fwd_out_format_.rate());

  int err = WriteMessageToDebugFile();
  if (err != kNoError) {
    return err;
  }

  return kNoError;
}
#endif  // WEBRTC_AUDIOPROC_DEBUG_DUMP

}  // namespace webrtc