1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#define _USE_MATH_DEFINES
#include "webrtc/modules/audio_processing/beamformer/beamformer.h"
#include <algorithm>
#include <cmath>
#include "webrtc/common_audio/window_generator.h"
#include "webrtc/modules/audio_processing/beamformer/covariance_matrix_generator.h"
namespace webrtc {
namespace {
// Alpha for the Kaiser Bessel Derived window.
const float kAlpha = 1.5f;
// The minimum value a postprocessing mask can take.
const float kMaskMinimum = 0.01f;
const int kFftSize = 256;
const float kSpeedOfSoundMeterSeconds = 340;
// For both target and interf angles, 0 is perpendicular to the microphone
// array, facing forwards. The positive direction goes counterclockwise.
// The angle at which we amplify sound.
const float kTargetAngleRadians = 0.f;
// The angle at which we suppress sound. Suppression is symmetric around 0
// radians, so sound is suppressed at both +|kInterfAngleRadians| and
// -|kInterfAngleRadians|. Since the beamformer is robust, this should
// suppress sound coming from angles near +-|kInterfAngleRadians| as well.
const float kInterfAngleRadians = static_cast<float>(M_PI) / 4.f;
// When calculating the interf covariance matrix, this is the weight for
// the weighted average between the uniform covariance matrix and the angled
// covariance matrix.
// Rpsi = Rpsi_angled * kBalance + Rpsi_uniform * (1 - kBalance)
const float kBalance = 0.2f;
const int kNumFreqBins = kFftSize / 2 + 1;
// TODO(claguna): need comment here.
const float kBeamwidthConstant = 0.00001f;
// Width of the boxcar.
const float kBoxcarHalfWidth = 0.001f;
// We put a gap in the covariance matrix where we expect the target to come
// from. Warning: This must be very small, ex. < 0.01, because otherwise it can
// cause the covariance matrix not to be positive semidefinite, and we require
// that our covariance matrices are positive semidefinite.
const float kCovUniformGapHalfWidth = 0.001f;
// How many blocks of past masks (including the current block) we save. Saved
// masks are used for postprocessing such as removing musical noise.
const int kNumberSavedPostfilterMasks = 2;
// Lower bound on gain decay.
const float kHalfLifeSeconds = 0.05f;
// The average mask is computed from masks in this mid-frequency range.
const int kMidFrequnecyLowerBoundHz = 250;
const int kMidFrequencyUpperBoundHz = 400;
const int kHighFrequnecyLowerBoundHz = 4000;
const int kHighFrequencyUpperBoundHz = 7000;
// Does conjugate(|norm_mat|) * |mat| * transpose(|norm_mat|). No extra space is
// used; to accomplish this, we compute both multiplications in the same loop.
float Norm(const ComplexMatrix<float>& mat,
const ComplexMatrix<float>& norm_mat) {
CHECK_EQ(norm_mat.num_rows(), 1);
CHECK_EQ(norm_mat.num_columns(), mat.num_rows());
CHECK_EQ(norm_mat.num_columns(), mat.num_columns());
complex<float> first_product = complex<float>(0.f, 0.f);
complex<float> second_product = complex<float>(0.f, 0.f);
const complex<float>* const* mat_els = mat.elements();
const complex<float>* const* norm_mat_els = norm_mat.elements();
for (int i = 0; i < norm_mat.num_columns(); ++i) {
for (int j = 0; j < norm_mat.num_columns(); ++j) {
complex<float> cur_norm_element = conj(norm_mat_els[0][j]);
complex<float> cur_mat_element = mat_els[j][i];
first_product += cur_norm_element * cur_mat_element;
}
second_product += first_product * norm_mat_els[0][i];
first_product = 0.f;
}
return second_product.real();
}
// Does conjugate(|lhs|) * |rhs| for row vectors |lhs| and |rhs|.
complex<float> ConjugateDotProduct(const ComplexMatrix<float>& lhs,
const ComplexMatrix<float>& rhs) {
CHECK_EQ(lhs.num_rows(), 1);
CHECK_EQ(rhs.num_rows(), 1);
CHECK_EQ(lhs.num_columns(), rhs.num_columns());
const complex<float>* const* lhs_elements = lhs.elements();
const complex<float>* const* rhs_elements = rhs.elements();
complex<float> result = complex<float>(0.f, 0.f);
for (int i = 0; i < lhs.num_columns(); ++i) {
result += conj(lhs_elements[0][i]) * rhs_elements[0][i];
}
return result;
}
// Works for positive numbers only.
int Round(float x) {
return std::floor(x + 0.5f);
}
} // namespace
Beamformer::Beamformer(int chunk_size_ms,
int sample_rate_hz,
const std::vector<Point>& array_geometry)
: chunk_length_(sample_rate_hz / (1000.f / chunk_size_ms)),
window_(new float[kFftSize]),
num_input_channels_(array_geometry.size()),
sample_rate_hz_(sample_rate_hz),
mic_spacing_(MicSpacingFromGeometry(array_geometry)),
decay_threshold_(
pow(2, (kFftSize / -2.f) / (sample_rate_hz_ * kHalfLifeSeconds))),
mid_frequency_lower_bin_bound_(
Round(kMidFrequnecyLowerBoundHz * kFftSize / sample_rate_hz_)),
mid_frequency_upper_bin_bound_(
Round(kMidFrequencyUpperBoundHz * kFftSize / sample_rate_hz_)),
high_frequency_lower_bin_bound_(
Round(kHighFrequnecyLowerBoundHz * kFftSize / sample_rate_hz_)),
high_frequency_upper_bin_bound_(
Round(kHighFrequencyUpperBoundHz * kFftSize / sample_rate_hz_)),
current_block_ix_(0),
previous_block_ix_(-1),
postfilter_masks_(new MatrixF[kNumberSavedPostfilterMasks]),
delay_sum_masks_(new ComplexMatrixF[kNumFreqBins]),
target_cov_mats_(new ComplexMatrixF[kNumFreqBins]),
interf_cov_mats_(new ComplexMatrixF[kNumFreqBins]),
reflected_interf_cov_mats_(new ComplexMatrixF[kNumFreqBins]),
mask_thresholds_(new float[kNumFreqBins]),
wave_numbers_(new float[kNumFreqBins]),
rxiws_(new float[kNumFreqBins]),
rpsiws_(new float[kNumFreqBins]),
reflected_rpsiws_(new float[kNumFreqBins]) {
DCHECK_LE(mid_frequency_upper_bin_bound_, kNumFreqBins);
DCHECK_LT(mid_frequency_lower_bin_bound_, mid_frequency_upper_bin_bound_);
DCHECK_LE(high_frequency_upper_bin_bound_, kNumFreqBins);
DCHECK_LT(high_frequency_lower_bin_bound_, high_frequency_upper_bin_bound_);
WindowGenerator::KaiserBesselDerived(kAlpha, kFftSize, window_.get());
lapped_transform_.reset(new LappedTransform(num_input_channels_,
1,
chunk_length_,
window_.get(),
kFftSize,
kFftSize / 2,
this));
for (int i = 0; i < kNumFreqBins; ++i) {
float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_;
wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds;
}
for (int i = 0; i < kNumFreqBins; ++i) {
mask_thresholds_[i] = num_input_channels_ * num_input_channels_ *
kBeamwidthConstant * wave_numbers_[i] *
wave_numbers_[i];
}
// Init all nonadaptive values before looping through the frames.
InitDelaySumMasks();
InitTargetCovMats();
InitInterfCovMats();
for (int i = 0; i < kNumFreqBins; ++i) {
rxiws_[i] = Norm(target_cov_mats_[i], delay_sum_masks_[i]);
}
for (int i = 0; i < kNumFreqBins; ++i) {
rpsiws_[i] = Norm(interf_cov_mats_[i], delay_sum_masks_[i]);
}
for (int i = 0; i < kNumFreqBins; ++i) {
reflected_rpsiws_[i] =
Norm(reflected_interf_cov_mats_[i], delay_sum_masks_[i]);
}
for (int i = 0; i < kNumberSavedPostfilterMasks; ++i) {
postfilter_masks_[i].Resize(1, kNumFreqBins);
}
}
void Beamformer::InitDelaySumMasks() {
float sin_target = sin(kTargetAngleRadians);
for (int f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
delay_sum_masks_[f_ix].Resize(1, num_input_channels_);
CovarianceMatrixGenerator::PhaseAlignmentMasks(f_ix,
kFftSize,
sample_rate_hz_,
kSpeedOfSoundMeterSeconds,
mic_spacing_,
num_input_channels_,
sin_target,
&delay_sum_masks_[f_ix]);
complex_f norm_factor = sqrt(
ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix]));
delay_sum_masks_[f_ix].Scale(1.f / norm_factor);
}
}
void Beamformer::InitTargetCovMats() {
target_cov_mats_[0].Resize(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::DCCovarianceMatrix(
num_input_channels_, kBoxcarHalfWidth, &target_cov_mats_[0]);
complex_f normalization_factor = target_cov_mats_[0].Trace();
target_cov_mats_[0].Scale(1.f / normalization_factor);
for (int i = 1; i < kNumFreqBins; ++i) {
float wave_number = wave_numbers_[i];
target_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::Boxcar(wave_number,
num_input_channels_,
mic_spacing_,
kBoxcarHalfWidth,
&target_cov_mats_[i]);
complex_f normalization_factor = target_cov_mats_[i].Trace();
target_cov_mats_[i].Scale(1.f / normalization_factor);
}
}
void Beamformer::InitInterfCovMats() {
interf_cov_mats_[0].Resize(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::DCCovarianceMatrix(
num_input_channels_, kCovUniformGapHalfWidth, &interf_cov_mats_[0]);
complex_f normalization_factor = interf_cov_mats_[0].Trace();
interf_cov_mats_[0].Scale(1.f / normalization_factor);
for (int i = 1; i < kNumFreqBins; ++i) {
float wave_number = wave_numbers_[i];
interf_cov_mats_[i].Resize(num_input_channels_, num_input_channels_);
ComplexMatrixF uniform_cov_mat(num_input_channels_, num_input_channels_);
ComplexMatrixF angled_cov_mat(num_input_channels_, num_input_channels_);
CovarianceMatrixGenerator::GappedUniformCovarianceMatrix(
wave_number,
num_input_channels_,
mic_spacing_,
kCovUniformGapHalfWidth,
&uniform_cov_mat);
CovarianceMatrixGenerator::AngledCovarianceMatrix(kSpeedOfSoundMeterSeconds,
kInterfAngleRadians,
i,
kFftSize,
kNumFreqBins,
sample_rate_hz_,
num_input_channels_,
mic_spacing_,
&angled_cov_mat);
// Normalize matrices before averaging them.
complex_f normalization_factor = uniform_cov_mat.Trace();
uniform_cov_mat.Scale(1.f / normalization_factor);
normalization_factor = angled_cov_mat.Trace();
angled_cov_mat.Scale(1.f / normalization_factor);
// Average matrices.
uniform_cov_mat.Scale(1 - kBalance);
angled_cov_mat.Scale(kBalance);
interf_cov_mats_[i].Add(uniform_cov_mat, angled_cov_mat);
}
for (int i = 0; i < kNumFreqBins; ++i) {
reflected_interf_cov_mats_[i].PointwiseConjugate(interf_cov_mats_[i]);
}
}
void Beamformer::ProcessChunk(const float* const* input,
const float* const* high_pass_split_input,
int num_input_channels,
int num_frames_per_band,
float* const* output,
float* const* high_pass_split_output) {
CHECK_EQ(num_input_channels, num_input_channels_);
CHECK_EQ(num_frames_per_band, chunk_length_);
num_blocks_in_this_chunk_ = 0;
float old_high_pass_mask = high_pass_postfilter_mask_;
high_pass_postfilter_mask_ = 0.f;
high_pass_exists_ = high_pass_split_input != NULL;
lapped_transform_->ProcessChunk(input, output);
// Apply delay and sum and postfilter in the time domain. WARNING: only works
// because delay-and-sum is not frequency dependent.
if (high_pass_exists_) {
high_pass_postfilter_mask_ /= num_blocks_in_this_chunk_;
if (previous_block_ix_ == -1) {
old_high_pass_mask = high_pass_postfilter_mask_;
}
// Ramp up/down for smoothing. 1 mask per 10ms results in audible
// discontinuities.
float ramp_inc =
(high_pass_postfilter_mask_ - old_high_pass_mask) / num_frames_per_band;
for (int i = 0; i < num_frames_per_band; ++i) {
old_high_pass_mask += ramp_inc;
// Applying the delay and sum (at zero degrees, this is equivalent to
// averaging).
float sum = 0.f;
for (int j = 0; j < num_input_channels; ++j) {
sum += high_pass_split_input[j][i];
}
high_pass_split_output[0][i] =
sum / num_input_channels * old_high_pass_mask;
}
}
}
void Beamformer::ProcessAudioBlock(const complex_f* const* input,
int num_input_channels,
int num_freq_bins,
int num_output_channels,
complex_f* const* output) {
CHECK_EQ(num_freq_bins, kNumFreqBins);
CHECK_EQ(num_input_channels, num_input_channels_);
CHECK_EQ(num_output_channels, 1);
float* mask_data = postfilter_masks_[current_block_ix_].elements()[0];
// Calculating the postfilter masks. Note that we need two for each
// frequency bin to account for the positive and negative interferer
// angle.
for (int i = 0; i < kNumFreqBins; ++i) {
eig_m_.CopyFromColumn(input, i, num_input_channels_);
float eig_m_norm_factor =
std::sqrt(ConjugateDotProduct(eig_m_, eig_m_)).real();
if (eig_m_norm_factor != 0.f) {
eig_m_.Scale(1.f / eig_m_norm_factor);
}
float rxim = Norm(target_cov_mats_[i], eig_m_);
float ratio_rxiw_rxim = 0.f;
if (rxim != 0.f) {
ratio_rxiw_rxim = rxiws_[i] / rxim;
}
complex_f rmw = abs(ConjugateDotProduct(delay_sum_masks_[i], eig_m_));
rmw *= rmw;
float rmw_r = rmw.real();
mask_data[i] = CalculatePostfilterMask(interf_cov_mats_[i],
rpsiws_[i],
ratio_rxiw_rxim,
rmw_r,
mask_thresholds_[i]);
mask_data[i] *= CalculatePostfilterMask(reflected_interf_cov_mats_[i],
reflected_rpsiws_[i],
ratio_rxiw_rxim,
rmw_r,
mask_thresholds_[i]);
}
// Can't access block_index - 1 on the first block.
if (previous_block_ix_ >= 0) {
ApplyDecay();
}
ApplyLowFrequencyCorrection();
if (high_pass_exists_) {
CalculateHighFrequencyMask();
}
ApplyMasks(input, output);
previous_block_ix_ = current_block_ix_;
current_block_ix_ = (current_block_ix_ + 1) % kNumberSavedPostfilterMasks;
num_blocks_in_this_chunk_++;
}
float Beamformer::CalculatePostfilterMask(const ComplexMatrixF& interf_cov_mat,
float rpsiw,
float ratio_rxiw_rxim,
float rmw_r,
float mask_threshold) {
float rpsim = Norm(interf_cov_mat, eig_m_);
// Find lambda.
float ratio = rpsiw / rpsim;
float numerator = rmw_r - ratio;
float denominator = ratio_rxiw_rxim - ratio;
float mask = 1.f;
if (denominator > mask_threshold) {
float lambda = numerator / denominator;
mask = std::max(lambda * ratio_rxiw_rxim / rmw_r, kMaskMinimum);
}
return mask;
}
void Beamformer::ApplyMasks(const complex_f* const* input,
complex_f* const* output) {
complex_f* output_channel = output[0];
const float* postfilter_mask_els =
postfilter_masks_[current_block_ix_].elements()[0];
for (int f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
output_channel[f_ix] = complex_f(0.f, 0.f);
const complex_f* delay_sum_mask_els = delay_sum_masks_[f_ix].elements()[0];
for (int c_ix = 0; c_ix < num_input_channels_; ++c_ix) {
output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix];
}
output_channel[f_ix] *= postfilter_mask_els[f_ix];
}
}
void Beamformer::ApplyDecay() {
float* current_mask_els = postfilter_masks_[current_block_ix_].elements()[0];
const float* previous_block_els =
postfilter_masks_[previous_block_ix_].elements()[0];
for (int i = 0; i < kNumFreqBins; ++i) {
current_mask_els[i] =
std::max(current_mask_els[i], previous_block_els[i] * decay_threshold_);
}
}
void Beamformer::ApplyLowFrequencyCorrection() {
float low_frequency_mask = 0.f;
float* mask_els = postfilter_masks_[current_block_ix_].elements()[0];
for (int i = mid_frequency_lower_bin_bound_;
i <= mid_frequency_upper_bin_bound_;
++i) {
low_frequency_mask += mask_els[i];
}
low_frequency_mask /=
mid_frequency_upper_bin_bound_ - mid_frequency_lower_bin_bound_ + 1;
for (int i = 0; i < mid_frequency_lower_bin_bound_; ++i) {
mask_els[i] = low_frequency_mask;
}
}
void Beamformer::CalculateHighFrequencyMask() {
float high_pass_mask = 0.f;
float* mask_els = postfilter_masks_[current_block_ix_].elements()[0];
for (int i = high_frequency_lower_bin_bound_;
i <= high_frequency_upper_bin_bound_;
++i) {
high_pass_mask += mask_els[i];
}
high_pass_mask /=
high_frequency_upper_bin_bound_ - high_frequency_lower_bin_bound_ + 1;
high_pass_postfilter_mask_ += high_pass_mask;
}
// This method CHECKs for a uniform linear array.
float Beamformer::MicSpacingFromGeometry(const std::vector<Point>& geometry) {
CHECK_GE(geometry.size(), 2u);
float mic_spacing = 0.f;
for (size_t i = 0u; i < 3u; ++i) {
float difference = geometry[1].c[i] - geometry[0].c[i];
for (size_t j = 2u; j < geometry.size(); ++j) {
CHECK_LT(geometry[j].c[i] - geometry[j - 1].c[i] - difference, 1e-6);
}
mic_spacing += difference * difference;
}
return sqrt(mic_spacing);
}
} // namespace webrtc
|