1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include <assert.h>
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/agc/legacy/gain_control.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
namespace webrtc {
typedef void Handle;
namespace {
int16_t MapSetting(GainControl::Mode mode) {
switch (mode) {
case GainControl::kAdaptiveAnalog:
return kAgcModeAdaptiveAnalog;
case GainControl::kAdaptiveDigital:
return kAgcModeAdaptiveDigital;
case GainControl::kFixedDigital:
return kAgcModeFixedDigital;
}
assert(false);
return -1;
}
} // namespace
GainControlImpl::GainControlImpl(const AudioProcessing* apm,
CriticalSectionWrapper* crit)
: ProcessingComponent(),
apm_(apm),
crit_(crit),
mode_(kAdaptiveAnalog),
minimum_capture_level_(0),
maximum_capture_level_(255),
limiter_enabled_(true),
target_level_dbfs_(3),
compression_gain_db_(9),
analog_capture_level_(0),
was_analog_level_set_(false),
stream_is_saturated_(false) {}
GainControlImpl::~GainControlImpl() {}
int GainControlImpl::ProcessRenderAudio(AudioBuffer* audio) {
if (!is_component_enabled()) {
return apm_->kNoError;
}
assert(audio->samples_per_split_channel() <= 160);
for (int i = 0; i < num_handles(); i++) {
Handle* my_handle = static_cast<Handle*>(handle(i));
int err = WebRtcAgc_AddFarend(
my_handle,
audio->mixed_low_pass_data(),
static_cast<int16_t>(audio->samples_per_split_channel()));
if (err != apm_->kNoError) {
return GetHandleError(my_handle);
}
}
return apm_->kNoError;
}
int GainControlImpl::AnalyzeCaptureAudio(AudioBuffer* audio) {
if (!is_component_enabled()) {
return apm_->kNoError;
}
assert(audio->samples_per_split_channel() <= 160);
assert(audio->num_channels() == num_handles());
int err = apm_->kNoError;
if (mode_ == kAdaptiveAnalog) {
capture_levels_.assign(num_handles(), analog_capture_level_);
for (int i = 0; i < num_handles(); i++) {
Handle* my_handle = static_cast<Handle*>(handle(i));
err = WebRtcAgc_AddMic(
my_handle,
audio->split_bands(i),
audio->num_bands(),
static_cast<int16_t>(audio->samples_per_split_channel()));
if (err != apm_->kNoError) {
return GetHandleError(my_handle);
}
}
} else if (mode_ == kAdaptiveDigital) {
for (int i = 0; i < num_handles(); i++) {
Handle* my_handle = static_cast<Handle*>(handle(i));
int32_t capture_level_out = 0;
err = WebRtcAgc_VirtualMic(
my_handle,
audio->split_bands(i),
audio->num_bands(),
static_cast<int16_t>(audio->samples_per_split_channel()),
analog_capture_level_,
&capture_level_out);
capture_levels_[i] = capture_level_out;
if (err != apm_->kNoError) {
return GetHandleError(my_handle);
}
}
}
return apm_->kNoError;
}
int GainControlImpl::ProcessCaptureAudio(AudioBuffer* audio) {
if (!is_component_enabled()) {
return apm_->kNoError;
}
if (mode_ == kAdaptiveAnalog && !was_analog_level_set_) {
return apm_->kStreamParameterNotSetError;
}
assert(audio->samples_per_split_channel() <= 160);
assert(audio->num_channels() == num_handles());
stream_is_saturated_ = false;
for (int i = 0; i < num_handles(); i++) {
Handle* my_handle = static_cast<Handle*>(handle(i));
int32_t capture_level_out = 0;
uint8_t saturation_warning = 0;
int err = WebRtcAgc_Process(
my_handle,
audio->split_bands_const(i),
audio->num_bands(),
static_cast<int16_t>(audio->samples_per_split_channel()),
audio->split_bands(i),
capture_levels_[i],
&capture_level_out,
apm_->echo_cancellation()->stream_has_echo(),
&saturation_warning);
if (err != apm_->kNoError) {
return GetHandleError(my_handle);
}
capture_levels_[i] = capture_level_out;
if (saturation_warning == 1) {
stream_is_saturated_ = true;
}
}
if (mode_ == kAdaptiveAnalog) {
// Take the analog level to be the average across the handles.
analog_capture_level_ = 0;
for (int i = 0; i < num_handles(); i++) {
analog_capture_level_ += capture_levels_[i];
}
analog_capture_level_ /= num_handles();
}
was_analog_level_set_ = false;
return apm_->kNoError;
}
// TODO(ajm): ensure this is called under kAdaptiveAnalog.
int GainControlImpl::set_stream_analog_level(int level) {
was_analog_level_set_ = true;
if (level < minimum_capture_level_ || level > maximum_capture_level_) {
return apm_->kBadParameterError;
}
analog_capture_level_ = level;
return apm_->kNoError;
}
int GainControlImpl::stream_analog_level() {
// TODO(ajm): enable this assertion?
//assert(mode_ == kAdaptiveAnalog);
return analog_capture_level_;
}
int GainControlImpl::Enable(bool enable) {
CriticalSectionScoped crit_scoped(crit_);
return EnableComponent(enable);
}
bool GainControlImpl::is_enabled() const {
return is_component_enabled();
}
int GainControlImpl::set_mode(Mode mode) {
CriticalSectionScoped crit_scoped(crit_);
if (MapSetting(mode) == -1) {
return apm_->kBadParameterError;
}
mode_ = mode;
return Initialize();
}
GainControl::Mode GainControlImpl::mode() const {
return mode_;
}
int GainControlImpl::set_analog_level_limits(int minimum,
int maximum) {
CriticalSectionScoped crit_scoped(crit_);
if (minimum < 0) {
return apm_->kBadParameterError;
}
if (maximum > 65535) {
return apm_->kBadParameterError;
}
if (maximum < minimum) {
return apm_->kBadParameterError;
}
minimum_capture_level_ = minimum;
maximum_capture_level_ = maximum;
return Initialize();
}
int GainControlImpl::analog_level_minimum() const {
return minimum_capture_level_;
}
int GainControlImpl::analog_level_maximum() const {
return maximum_capture_level_;
}
bool GainControlImpl::stream_is_saturated() const {
return stream_is_saturated_;
}
int GainControlImpl::set_target_level_dbfs(int level) {
CriticalSectionScoped crit_scoped(crit_);
if (level > 31 || level < 0) {
return apm_->kBadParameterError;
}
target_level_dbfs_ = level;
return Configure();
}
int GainControlImpl::target_level_dbfs() const {
return target_level_dbfs_;
}
int GainControlImpl::set_compression_gain_db(int gain) {
CriticalSectionScoped crit_scoped(crit_);
if (gain < 0 || gain > 90) {
return apm_->kBadParameterError;
}
compression_gain_db_ = gain;
return Configure();
}
int GainControlImpl::compression_gain_db() const {
return compression_gain_db_;
}
int GainControlImpl::enable_limiter(bool enable) {
CriticalSectionScoped crit_scoped(crit_);
limiter_enabled_ = enable;
return Configure();
}
bool GainControlImpl::is_limiter_enabled() const {
return limiter_enabled_;
}
int GainControlImpl::Initialize() {
int err = ProcessingComponent::Initialize();
if (err != apm_->kNoError || !is_component_enabled()) {
return err;
}
capture_levels_.assign(num_handles(), analog_capture_level_);
return apm_->kNoError;
}
void* GainControlImpl::CreateHandle() const {
Handle* handle = NULL;
if (WebRtcAgc_Create(&handle) != apm_->kNoError) {
handle = NULL;
} else {
assert(handle != NULL);
}
return handle;
}
void GainControlImpl::DestroyHandle(void* handle) const {
WebRtcAgc_Free(static_cast<Handle*>(handle));
}
int GainControlImpl::InitializeHandle(void* handle) const {
return WebRtcAgc_Init(static_cast<Handle*>(handle),
minimum_capture_level_,
maximum_capture_level_,
MapSetting(mode_),
apm_->proc_sample_rate_hz());
}
int GainControlImpl::ConfigureHandle(void* handle) const {
WebRtcAgcConfig config;
// TODO(ajm): Flip the sign here (since AGC expects a positive value) if we
// change the interface.
//assert(target_level_dbfs_ <= 0);
//config.targetLevelDbfs = static_cast<int16_t>(-target_level_dbfs_);
config.targetLevelDbfs = static_cast<int16_t>(target_level_dbfs_);
config.compressionGaindB =
static_cast<int16_t>(compression_gain_db_);
config.limiterEnable = limiter_enabled_;
return WebRtcAgc_set_config(static_cast<Handle*>(handle), config);
}
int GainControlImpl::num_handles_required() const {
return apm_->num_output_channels();
}
int GainControlImpl::GetHandleError(void* handle) const {
// The AGC has no get_error() function.
// (Despite listing errors in its interface...)
assert(handle != NULL);
return apm_->kUnspecifiedError;
}
} // namespace webrtc
|