1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/mimd_rate_control.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
namespace webrtc {
const uint32_t kDefaultRttMs = 200;
const int64_t kLogIntervalMs = 1000;
MimdRateControl::MimdRateControl(uint32_t min_bitrate_bps)
: min_configured_bit_rate_(min_bitrate_bps),
max_configured_bit_rate_(30000000),
current_bit_rate_(max_configured_bit_rate_),
max_hold_rate_(0),
avg_max_bit_rate_(-1.0f),
var_max_bit_rate_(0.4f),
rate_control_state_(kRcHold),
came_from_state_(kRcDecrease),
rate_control_region_(kRcMaxUnknown),
last_bit_rate_change_(-1),
current_input_(kBwNormal, 0, 1.0),
updated_(false),
time_first_incoming_estimate_(-1),
initialized_bit_rate_(false),
avg_change_period_(1000.0f),
last_change_ms_(-1),
beta_(0.9f),
rtt_(kDefaultRttMs),
time_of_last_log_(-1)
{
}
RateControlType MimdRateControl::GetControlType() const {
return kMimdControl;
}
uint32_t MimdRateControl::GetMinBitrate() const {
return min_configured_bit_rate_;
}
bool MimdRateControl::ValidEstimate() const {
return initialized_bit_rate_;
}
int64_t MimdRateControl::GetFeedbackInterval() const {
return kMaxFeedbackIntervalMs;
}
bool MimdRateControl::TimeToReduceFurther(int64_t time_now,
uint32_t incoming_bitrate_bps) const {
const int bitrate_reduction_interval = std::max(std::min(rtt_, 200u), 10u);
if (time_now - last_bit_rate_change_ >= bitrate_reduction_interval) {
return true;
}
if (ValidEstimate()) {
const int threshold = static_cast<int>(1.05 * incoming_bitrate_bps);
const int bitrate_difference = LatestEstimate() - incoming_bitrate_bps;
return bitrate_difference > threshold;
}
return false;
}
uint32_t MimdRateControl::LatestEstimate() const {
return current_bit_rate_;
}
uint32_t MimdRateControl::UpdateBandwidthEstimate(int64_t now_ms) {
current_bit_rate_ = ChangeBitRate(current_bit_rate_,
current_input_._incomingBitRate,
current_input_._noiseVar,
now_ms);
if (now_ms - time_of_last_log_ > kLogIntervalMs) {
time_of_last_log_ = now_ms;
}
return current_bit_rate_;
}
void MimdRateControl::SetRtt(uint32_t rtt) {
rtt_ = rtt;
}
RateControlRegion MimdRateControl::Update(const RateControlInput* input,
int64_t now_ms) {
assert(input);
// Set the initial bit rate value to what we're receiving the first half
// second.
if (!initialized_bit_rate_) {
if (time_first_incoming_estimate_ < 0) {
if (input->_incomingBitRate > 0) {
time_first_incoming_estimate_ = now_ms;
}
} else if (now_ms - time_first_incoming_estimate_ > 500 &&
input->_incomingBitRate > 0) {
current_bit_rate_ = input->_incomingBitRate;
initialized_bit_rate_ = true;
}
}
if (updated_ && current_input_._bwState == kBwOverusing) {
// Only update delay factor and incoming bit rate. We always want to react
// on an over-use.
current_input_._noiseVar = input->_noiseVar;
current_input_._incomingBitRate = input->_incomingBitRate;
return rate_control_region_;
}
updated_ = true;
current_input_ = *input;
return rate_control_region_;
}
void MimdRateControl::SetEstimate(int bitrate_bps, int64_t now_ms) {
}
uint32_t MimdRateControl::ChangeBitRate(uint32_t current_bit_rate,
uint32_t incoming_bit_rate,
double noise_var,
int64_t now_ms) {
if (!updated_) {
return current_bit_rate_;
}
updated_ = false;
UpdateChangePeriod(now_ms);
ChangeState(current_input_, now_ms);
// calculated here because it's used in multiple places
const float incoming_bit_rate_kbps = incoming_bit_rate / 1000.0f;
// Calculate the max bit rate std dev given the normalized
// variance and the current incoming bit rate.
const float std_max_bit_rate = sqrt(var_max_bit_rate_ * avg_max_bit_rate_);
bool recovery = false;
switch (rate_control_state_) {
case kRcHold: {
max_hold_rate_ = std::max(max_hold_rate_, incoming_bit_rate);
break;
}
case kRcIncrease: {
if (avg_max_bit_rate_ >= 0) {
if (incoming_bit_rate_kbps > avg_max_bit_rate_ + 3 * std_max_bit_rate) {
ChangeRegion(kRcMaxUnknown);
avg_max_bit_rate_ = -1.0;
} else if (incoming_bit_rate_kbps > avg_max_bit_rate_ + 2.5 *
std_max_bit_rate) {
ChangeRegion(kRcAboveMax);
}
}
const uint32_t response_time = static_cast<uint32_t>(avg_change_period_ +
0.5f) + rtt_ + 300;
double alpha = RateIncreaseFactor(now_ms, last_bit_rate_change_,
response_time, noise_var);
current_bit_rate = static_cast<uint32_t>(current_bit_rate * alpha) + 1000;
if (max_hold_rate_ > 0 && beta_ * max_hold_rate_ > current_bit_rate) {
current_bit_rate = static_cast<uint32_t>(beta_ * max_hold_rate_);
avg_max_bit_rate_ = beta_ * max_hold_rate_ / 1000.0f;
ChangeRegion(kRcNearMax);
recovery = true;
}
max_hold_rate_ = 0;
last_bit_rate_change_ = now_ms;
break;
}
case kRcDecrease: {
if (incoming_bit_rate < min_configured_bit_rate_) {
current_bit_rate = min_configured_bit_rate_;
} else {
// Set bit rate to something slightly lower than max
// to get rid of any self-induced delay.
current_bit_rate = static_cast<uint32_t>(beta_ * incoming_bit_rate +
0.5);
if (current_bit_rate > current_bit_rate_) {
// Avoid increasing the rate when over-using.
if (rate_control_region_ != kRcMaxUnknown) {
current_bit_rate = static_cast<uint32_t>(beta_ * avg_max_bit_rate_ *
1000 + 0.5f);
}
current_bit_rate = std::min(current_bit_rate, current_bit_rate_);
}
ChangeRegion(kRcNearMax);
if (incoming_bit_rate_kbps < avg_max_bit_rate_ - 3 * std_max_bit_rate) {
avg_max_bit_rate_ = -1.0f;
}
UpdateMaxBitRateEstimate(incoming_bit_rate_kbps);
}
// Stay on hold until the pipes are cleared.
ChangeState(kRcHold);
last_bit_rate_change_ = now_ms;
break;
}
default:
assert(false);
}
if (!recovery && (incoming_bit_rate > 100000 || current_bit_rate > 150000) &&
current_bit_rate > 1.5 * incoming_bit_rate) {
// Allow changing the bit rate if we are operating at very low rates
// Don't change the bit rate if the send side is too far off
current_bit_rate = current_bit_rate_;
last_bit_rate_change_ = now_ms;
}
return current_bit_rate;
}
double MimdRateControl::RateIncreaseFactor(int64_t now_ms,
int64_t last_ms,
uint32_t reaction_time_ms,
double noise_var) const {
// alpha = 1.02 + B ./ (1 + exp(b*(tr - (c1*s2 + c2))))
// Parameters
const double B = 0.0407;
const double b = 0.0025;
const double c1 = -6700.0 / (33 * 33);
const double c2 = 800.0;
const double d = 0.85;
double alpha = 1.005 + B / (1 + exp( b * (d * reaction_time_ms -
(c1 * noise_var + c2))));
if (alpha < 1.005) {
alpha = 1.005;
} else if (alpha > 1.3) {
alpha = 1.3;
}
if (last_ms > -1) {
alpha = pow(alpha, (now_ms - last_ms) / 1000.0);
}
if (rate_control_region_ == kRcNearMax) {
// We're close to our previous maximum. Try to stabilize the
// bit rate in this region, by increasing in smaller steps.
alpha = alpha - (alpha - 1.0) / 2.0;
} else if (rate_control_region_ == kRcMaxUnknown) {
alpha = alpha + (alpha - 1.0) * 2.0;
}
return alpha;
}
void MimdRateControl::UpdateChangePeriod(int64_t now_ms) {
int64_t change_period = 0;
if (last_change_ms_ > -1) {
change_period = now_ms - last_change_ms_;
}
last_change_ms_ = now_ms;
avg_change_period_ = 0.9f * avg_change_period_ + 0.1f * change_period;
}
void MimdRateControl::UpdateMaxBitRateEstimate(float incoming_bit_rate_kbps) {
const float alpha = 0.05f;
if (avg_max_bit_rate_ == -1.0f) {
avg_max_bit_rate_ = incoming_bit_rate_kbps;
} else {
avg_max_bit_rate_ = (1 - alpha) * avg_max_bit_rate_ +
alpha * incoming_bit_rate_kbps;
}
// Estimate the max bit rate variance and normalize the variance
// with the average max bit rate.
const float norm = std::max(avg_max_bit_rate_, 1.0f);
var_max_bit_rate_ = (1 - alpha) * var_max_bit_rate_ +
alpha * (avg_max_bit_rate_ - incoming_bit_rate_kbps) *
(avg_max_bit_rate_ - incoming_bit_rate_kbps) / norm;
// 0.4 ~= 14 kbit/s at 500 kbit/s
if (var_max_bit_rate_ < 0.4f) {
var_max_bit_rate_ = 0.4f;
}
// 2.5f ~= 35 kbit/s at 500 kbit/s
if (var_max_bit_rate_ > 2.5f) {
var_max_bit_rate_ = 2.5f;
}
}
void MimdRateControl::ChangeState(const RateControlInput& input,
int64_t now_ms) {
switch (current_input_._bwState) {
case kBwNormal:
if (rate_control_state_ == kRcHold) {
last_bit_rate_change_ = now_ms;
ChangeState(kRcIncrease);
}
break;
case kBwOverusing:
if (rate_control_state_ != kRcDecrease) {
ChangeState(kRcDecrease);
}
break;
case kBwUnderusing:
ChangeState(kRcHold);
break;
default:
assert(false);
}
}
void MimdRateControl::ChangeRegion(RateControlRegion region) {
rate_control_region_ = region;
switch (rate_control_region_) {
case kRcAboveMax:
case kRcMaxUnknown:
beta_ = 0.9f;
break;
case kRcNearMax:
beta_ = 0.95f;
break;
default:
assert(false);
}
}
void MimdRateControl::ChangeState(RateControlState new_state) {
came_from_state_ = rate_control_state_;
rate_control_state_ = new_state;
}
} // namespace webrtc
|