1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_format_h264.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
namespace webrtc {
namespace {
enum Nalu {
kSlice = 1,
kIdr = 5,
kSei = 6,
kSps = 7,
kPps = 8,
kStapA = 24,
kFuA = 28
};
static const size_t kNalHeaderSize = 1;
static const size_t kFuAHeaderSize = 2;
static const size_t kLengthFieldSize = 2;
// Bit masks for FU (A and B) indicators.
enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F };
// Bit masks for FU (A and B) headers.
enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 };
void ParseSingleNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
const uint8_t* payload_data,
size_t payload_data_length) {
parsed_payload->type.Video.width = 0;
parsed_payload->type.Video.height = 0;
parsed_payload->type.Video.codec = kRtpVideoH264;
parsed_payload->type.Video.isFirstPacket = true;
RTPVideoHeaderH264* h264_header =
&parsed_payload->type.Video.codecHeader.H264;
h264_header->single_nalu = true;
h264_header->stap_a = false;
uint8_t nal_type = payload_data[0] & kTypeMask;
if (nal_type == kStapA) {
nal_type = payload_data[3] & kTypeMask;
h264_header->stap_a = true;
}
switch (nal_type) {
case kSps:
case kPps:
case kIdr:
parsed_payload->frame_type = kVideoFrameKey;
break;
default:
parsed_payload->frame_type = kVideoFrameDelta;
break;
}
}
void ParseFuaNalu(RtpDepacketizer::ParsedPayload* parsed_payload,
const uint8_t* payload_data,
size_t payload_data_length,
size_t* offset) {
uint8_t fnri = payload_data[0] & (kFBit | kNriMask);
uint8_t original_nal_type = payload_data[1] & kTypeMask;
bool first_fragment = (payload_data[1] & kSBit) > 0;
uint8_t original_nal_header = fnri | original_nal_type;
if (first_fragment) {
*offset = kNalHeaderSize;
uint8_t* payload = const_cast<uint8_t*>(payload_data + *offset);
payload[0] = original_nal_header;
} else {
*offset = kFuAHeaderSize;
}
if (original_nal_type == kIdr) {
parsed_payload->frame_type = kVideoFrameKey;
} else {
parsed_payload->frame_type = kVideoFrameDelta;
}
parsed_payload->type.Video.width = 0;
parsed_payload->type.Video.height = 0;
parsed_payload->type.Video.codec = kRtpVideoH264;
parsed_payload->type.Video.isFirstPacket = first_fragment;
RTPVideoHeaderH264* h264_header =
&parsed_payload->type.Video.codecHeader.H264;
h264_header->single_nalu = false;
h264_header->stap_a = false;
}
} // namespace
RtpPacketizerH264::RtpPacketizerH264(FrameType frame_type,
size_t max_payload_len)
: payload_data_(NULL),
payload_size_(0),
max_payload_len_(max_payload_len),
frame_type_(frame_type) {
}
RtpPacketizerH264::~RtpPacketizerH264() {
}
void RtpPacketizerH264::SetPayloadData(
const uint8_t* payload_data,
size_t payload_size,
const RTPFragmentationHeader* fragmentation) {
assert(packets_.empty());
assert(fragmentation);
payload_data_ = payload_data;
payload_size_ = payload_size;
fragmentation_.CopyFrom(*fragmentation);
GeneratePackets();
}
void RtpPacketizerH264::GeneratePackets() {
for (size_t i = 0; i < fragmentation_.fragmentationVectorSize;) {
size_t fragment_offset = fragmentation_.fragmentationOffset[i];
size_t fragment_length = fragmentation_.fragmentationLength[i];
if (fragment_length > max_payload_len_) {
PacketizeFuA(fragment_offset, fragment_length);
++i;
} else {
i = PacketizeStapA(i, fragment_offset, fragment_length);
}
}
}
void RtpPacketizerH264::PacketizeFuA(size_t fragment_offset,
size_t fragment_length) {
// Fragment payload into packets (FU-A).
// Strip out the original header and leave room for the FU-A header.
fragment_length -= kNalHeaderSize;
size_t offset = fragment_offset + kNalHeaderSize;
size_t bytes_available = max_payload_len_ - kFuAHeaderSize;
size_t fragments =
(fragment_length + (bytes_available - 1)) / bytes_available;
size_t avg_size = (fragment_length + fragments - 1) / fragments;
while (fragment_length > 0) {
size_t packet_length = avg_size;
if (fragment_length < avg_size)
packet_length = fragment_length;
uint8_t header = payload_data_[fragment_offset];
packets_.push(Packet(offset,
packet_length,
offset - kNalHeaderSize == fragment_offset,
fragment_length == packet_length,
false,
header));
offset += packet_length;
fragment_length -= packet_length;
}
}
int RtpPacketizerH264::PacketizeStapA(size_t fragment_index,
size_t fragment_offset,
size_t fragment_length) {
// Aggregate fragments into one packet (STAP-A).
size_t payload_size_left = max_payload_len_;
int aggregated_fragments = 0;
size_t fragment_headers_length = 0;
assert(payload_size_left >= fragment_length);
while (payload_size_left >= fragment_length + fragment_headers_length) {
assert(fragment_length > 0);
uint8_t header = payload_data_[fragment_offset];
packets_.push(Packet(fragment_offset,
fragment_length,
aggregated_fragments == 0,
false,
true,
header));
payload_size_left -= fragment_length;
payload_size_left -= fragment_headers_length;
// Next fragment.
++fragment_index;
if (fragment_index == fragmentation_.fragmentationVectorSize)
break;
fragment_offset = fragmentation_.fragmentationOffset[fragment_index];
fragment_length = fragmentation_.fragmentationLength[fragment_index];
fragment_headers_length = kLengthFieldSize;
// If we are going to try to aggregate more fragments into this packet
// we need to add the STAP-A NALU header and a length field for the first
// NALU of this packet.
if (aggregated_fragments == 0)
fragment_headers_length += kNalHeaderSize + kLengthFieldSize;
++aggregated_fragments;
}
packets_.back().last_fragment = true;
return fragment_index;
}
bool RtpPacketizerH264::NextPacket(uint8_t* buffer,
size_t* bytes_to_send,
bool* last_packet) {
*bytes_to_send = 0;
if (packets_.empty()) {
*bytes_to_send = 0;
*last_packet = true;
return false;
}
Packet packet = packets_.front();
if (packet.first_fragment && packet.last_fragment) {
// Single NAL unit packet.
*bytes_to_send = packet.size;
memcpy(buffer, &payload_data_[packet.offset], packet.size);
packets_.pop();
assert(*bytes_to_send <= max_payload_len_);
} else if (packet.aggregated) {
NextAggregatePacket(buffer, bytes_to_send);
assert(*bytes_to_send <= max_payload_len_);
} else {
NextFragmentPacket(buffer, bytes_to_send);
assert(*bytes_to_send <= max_payload_len_);
}
*last_packet = packets_.empty();
return true;
}
void RtpPacketizerH264::NextAggregatePacket(uint8_t* buffer,
size_t* bytes_to_send) {
Packet packet = packets_.front();
assert(packet.first_fragment);
// STAP-A NALU header.
buffer[0] = (packet.header & (kFBit | kNriMask)) | kStapA;
int index = kNalHeaderSize;
*bytes_to_send += kNalHeaderSize;
while (packet.aggregated) {
// Add NAL unit length field.
RtpUtility::AssignUWord16ToBuffer(&buffer[index], packet.size);
index += kLengthFieldSize;
*bytes_to_send += kLengthFieldSize;
// Add NAL unit.
memcpy(&buffer[index], &payload_data_[packet.offset], packet.size);
index += packet.size;
*bytes_to_send += packet.size;
packets_.pop();
if (packet.last_fragment)
break;
packet = packets_.front();
}
assert(packet.last_fragment);
}
void RtpPacketizerH264::NextFragmentPacket(uint8_t* buffer,
size_t* bytes_to_send) {
Packet packet = packets_.front();
// NAL unit fragmented over multiple packets (FU-A).
// We do not send original NALU header, so it will be replaced by the
// FU indicator header of the first packet.
uint8_t fu_indicator = (packet.header & (kFBit | kNriMask)) | kFuA;
uint8_t fu_header = 0;
// S | E | R | 5 bit type.
fu_header |= (packet.first_fragment ? kSBit : 0);
fu_header |= (packet.last_fragment ? kEBit : 0);
uint8_t type = packet.header & kTypeMask;
fu_header |= type;
buffer[0] = fu_indicator;
buffer[1] = fu_header;
if (packet.last_fragment) {
*bytes_to_send = packet.size + kFuAHeaderSize;
memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
} else {
*bytes_to_send = packet.size + kFuAHeaderSize;
memcpy(buffer + kFuAHeaderSize, &payload_data_[packet.offset], packet.size);
}
packets_.pop();
}
ProtectionType RtpPacketizerH264::GetProtectionType() {
return (frame_type_ == kVideoFrameKey) ? kProtectedPacket
: kUnprotectedPacket;
}
StorageType RtpPacketizerH264::GetStorageType(
uint32_t retransmission_settings) {
return kAllowRetransmission;
}
std::string RtpPacketizerH264::ToString() {
return "RtpPacketizerH264";
}
bool RtpDepacketizerH264::Parse(ParsedPayload* parsed_payload,
const uint8_t* payload_data,
size_t payload_data_length) {
assert(parsed_payload != NULL);
uint8_t nal_type = payload_data[0] & kTypeMask;
size_t offset = 0;
if (nal_type == kFuA) {
// Fragmented NAL units (FU-A).
ParseFuaNalu(parsed_payload, payload_data, payload_data_length, &offset);
} else {
// We handle STAP-A and single NALU's the same way here. The jitter buffer
// will depacketize the STAP-A into NAL units later.
ParseSingleNalu(parsed_payload, payload_data, payload_data_length);
}
parsed_payload->payload = payload_data + offset;
parsed_payload->payload_length = payload_data_length - offset;
return true;
}
} // namespace webrtc
|