1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/pacing/include/mock/mock_paced_sender.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_header_parser.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp_defines.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include "webrtc/system_wrappers/interface/scoped_vector.h"
#include "webrtc/test/rtcp_packet_parser.h"
using ::testing::_;
using ::testing::ElementsAre;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::SaveArg;
namespace webrtc {
namespace {
const uint32_t kSenderSsrc = 0x12345;
const uint32_t kReceiverSsrc = 0x23456;
const uint32_t kSenderRtxSsrc = 0x32345;
const uint32_t kOneWayNetworkDelayMs = 100;
const uint8_t kBaseLayerTid = 0;
const uint8_t kHigherLayerTid = 1;
const uint16_t kSequenceNumber = 100;
class RtcpRttStatsTestImpl : public RtcpRttStats {
public:
RtcpRttStatsTestImpl() : rtt_ms_(0) {}
virtual ~RtcpRttStatsTestImpl() {}
virtual void OnRttUpdate(uint32_t rtt_ms) OVERRIDE {
rtt_ms_ = rtt_ms;
}
virtual uint32_t LastProcessedRtt() const OVERRIDE {
return rtt_ms_;
}
uint32_t rtt_ms_;
};
class SendTransport : public Transport,
public NullRtpData {
public:
SendTransport()
: receiver_(NULL),
clock_(NULL),
delay_ms_(0),
rtp_packets_sent_(0) {
}
void SetRtpRtcpModule(ModuleRtpRtcpImpl* receiver) {
receiver_ = receiver;
}
void SimulateNetworkDelay(uint32_t delay_ms, SimulatedClock* clock) {
clock_ = clock;
delay_ms_ = delay_ms;
}
virtual int SendPacket(int /*ch*/, const void* data, size_t len) OVERRIDE {
RTPHeader header;
scoped_ptr<RtpHeaderParser> parser(RtpHeaderParser::Create());
EXPECT_TRUE(parser->Parse(static_cast<const uint8_t*>(data), len, &header));
++rtp_packets_sent_;
last_rtp_header_ = header;
return static_cast<int>(len);
}
virtual int SendRTCPPacket(int /*ch*/,
const void *data,
size_t len) OVERRIDE {
test::RtcpPacketParser parser;
parser.Parse(static_cast<const uint8_t*>(data), len);
last_nack_list_ = parser.nack_item()->last_nack_list();
if (clock_) {
clock_->AdvanceTimeMilliseconds(delay_ms_);
}
EXPECT_TRUE(receiver_ != NULL);
EXPECT_EQ(0, receiver_->IncomingRtcpPacket(
static_cast<const uint8_t*>(data), len));
return static_cast<int>(len);
}
ModuleRtpRtcpImpl* receiver_;
SimulatedClock* clock_;
uint32_t delay_ms_;
int rtp_packets_sent_;
RTPHeader last_rtp_header_;
std::vector<uint16_t> last_nack_list_;
};
class RtpRtcpModule {
public:
RtpRtcpModule(SimulatedClock* clock)
: receive_statistics_(ReceiveStatistics::Create(clock)) {
RtpRtcp::Configuration config;
config.audio = false;
config.clock = clock;
config.outgoing_transport = &transport_;
config.receive_statistics = receive_statistics_.get();
config.rtt_stats = &rtt_stats_;
impl_.reset(new ModuleRtpRtcpImpl(config));
impl_->SetRTCPStatus(kRtcpCompound);
transport_.SimulateNetworkDelay(kOneWayNetworkDelayMs, clock);
}
RtcpPacketTypeCounter packets_sent_;
RtcpPacketTypeCounter packets_received_;
scoped_ptr<ReceiveStatistics> receive_statistics_;
SendTransport transport_;
RtcpRttStatsTestImpl rtt_stats_;
scoped_ptr<ModuleRtpRtcpImpl> impl_;
RtcpPacketTypeCounter RtcpSent() {
impl_->GetRtcpPacketTypeCounters(&packets_sent_, &packets_received_);
return packets_sent_;
}
RtcpPacketTypeCounter RtcpReceived() {
impl_->GetRtcpPacketTypeCounters(&packets_sent_, &packets_received_);
return packets_received_;
}
int RtpSent() {
return transport_.rtp_packets_sent_;
}
uint16_t LastRtpSequenceNumber() {
return transport_.last_rtp_header_.sequenceNumber;
}
std::vector<uint16_t> LastNackListSent() {
return transport_.last_nack_list_;
}
};
} // namespace
class RtpRtcpImplTest : public ::testing::Test {
protected:
RtpRtcpImplTest()
: clock_(133590000000000),
sender_(&clock_),
receiver_(&clock_) {
// Send module.
EXPECT_EQ(0, sender_.impl_->SetSendingStatus(true));
sender_.impl_->SetSendingMediaStatus(true);
sender_.impl_->SetSSRC(kSenderSsrc);
sender_.impl_->SetRemoteSSRC(kReceiverSsrc);
sender_.impl_->SetSequenceNumber(kSequenceNumber);
sender_.impl_->SetStorePacketsStatus(true, 100);
memset(&codec_, 0, sizeof(VideoCodec));
codec_.plType = 100;
strncpy(codec_.plName, "VP8", 3);
codec_.width = 320;
codec_.height = 180;
EXPECT_EQ(0, sender_.impl_->RegisterSendPayload(codec_));
// Receive module.
EXPECT_EQ(0, receiver_.impl_->SetSendingStatus(false));
receiver_.impl_->SetSendingMediaStatus(false);
receiver_.impl_->SetSSRC(kReceiverSsrc);
receiver_.impl_->SetRemoteSSRC(kSenderSsrc);
// Transport settings.
sender_.transport_.SetRtpRtcpModule(receiver_.impl_.get());
receiver_.transport_.SetRtpRtcpModule(sender_.impl_.get());
}
SimulatedClock clock_;
RtpRtcpModule sender_;
RtpRtcpModule receiver_;
VideoCodec codec_;
void SendFrame(const RtpRtcpModule* module, uint8_t tid) {
RTPVideoHeaderVP8 vp8_header = {};
vp8_header.temporalIdx = tid;
RTPVideoHeader rtp_video_header = {
codec_.width, codec_.height, true, 0, kRtpVideoVp8, {vp8_header}};
const uint8_t payload[100] = {0};
EXPECT_EQ(0, module->impl_->SendOutgoingData(kVideoFrameKey,
codec_.plType,
0,
0,
payload,
sizeof(payload),
NULL,
&rtp_video_header));
}
void IncomingRtcpNack(const RtpRtcpModule* module, uint16_t sequence_number) {
bool sender = module->impl_->SSRC() == kSenderSsrc;
rtcp::Nack nack;
uint16_t list[1];
list[0] = sequence_number;
const uint16_t kListLength = sizeof(list) / sizeof(list[0]);
nack.From(sender ? kReceiverSsrc : kSenderSsrc);
nack.To(sender ? kSenderSsrc : kReceiverSsrc);
nack.WithList(list, kListLength);
rtcp::RawPacket packet = nack.Build();
EXPECT_EQ(0, module->impl_->IncomingRtcpPacket(packet.buffer(),
packet.buffer_length()));
}
};
TEST_F(RtpRtcpImplTest, SetSelectiveRetransmissions_BaseLayer) {
sender_.impl_->SetSelectiveRetransmissions(kRetransmitBaseLayer);
EXPECT_EQ(kRetransmitBaseLayer, sender_.impl_->SelectiveRetransmissions());
// Send frames.
EXPECT_EQ(0, sender_.RtpSent());
SendFrame(&sender_, kBaseLayerTid); // kSequenceNumber
SendFrame(&sender_, kHigherLayerTid); // kSequenceNumber + 1
SendFrame(&sender_, kNoTemporalIdx); // kSequenceNumber + 2
EXPECT_EQ(3, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber());
// Frame with kBaseLayerTid re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber);
EXPECT_EQ(4, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber, sender_.LastRtpSequenceNumber());
// Frame with kHigherLayerTid not re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber + 1);
EXPECT_EQ(4, sender_.RtpSent());
// Frame with kNoTemporalIdx re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber + 2);
EXPECT_EQ(5, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber());
}
TEST_F(RtpRtcpImplTest, SetSelectiveRetransmissions_HigherLayers) {
const uint8_t kSetting = kRetransmitBaseLayer + kRetransmitHigherLayers;
sender_.impl_->SetSelectiveRetransmissions(kSetting);
EXPECT_EQ(kSetting, sender_.impl_->SelectiveRetransmissions());
// Send frames.
EXPECT_EQ(0, sender_.RtpSent());
SendFrame(&sender_, kBaseLayerTid); // kSequenceNumber
SendFrame(&sender_, kHigherLayerTid); // kSequenceNumber + 1
SendFrame(&sender_, kNoTemporalIdx); // kSequenceNumber + 2
EXPECT_EQ(3, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber());
// Frame with kBaseLayerTid re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber);
EXPECT_EQ(4, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber, sender_.LastRtpSequenceNumber());
// Frame with kHigherLayerTid re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber + 1);
EXPECT_EQ(5, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber + 1, sender_.LastRtpSequenceNumber());
// Frame with kNoTemporalIdx re-sent.
IncomingRtcpNack(&sender_, kSequenceNumber + 2);
EXPECT_EQ(6, sender_.RtpSent());
EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber());
}
TEST_F(RtpRtcpImplTest, Rtt) {
RTPHeader header;
header.timestamp = 1;
header.sequenceNumber = 123;
header.ssrc = kSenderSsrc;
header.headerLength = 12;
receiver_.receive_statistics_->IncomingPacket(header, 100, false);
// Sender module should send a SR.
EXPECT_EQ(0, sender_.impl_->SendRTCP(kRtcpReport));
// Receiver module should send a RR with a response to the last received SR.
clock_.AdvanceTimeMilliseconds(1000);
EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpReport));
// Verify RTT.
uint16_t rtt;
uint16_t avg_rtt;
uint16_t min_rtt;
uint16_t max_rtt;
EXPECT_EQ(0,
sender_.impl_->RTT(kReceiverSsrc, &rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_EQ(2 * kOneWayNetworkDelayMs, rtt);
EXPECT_EQ(2 * kOneWayNetworkDelayMs, avg_rtt);
EXPECT_EQ(2 * kOneWayNetworkDelayMs, min_rtt);
EXPECT_EQ(2 * kOneWayNetworkDelayMs, max_rtt);
// No RTT from other ssrc.
EXPECT_EQ(-1,
sender_.impl_->RTT(kReceiverSsrc+1, &rtt, &avg_rtt, &min_rtt, &max_rtt));
// Verify RTT from rtt_stats config.
EXPECT_EQ(0U, sender_.rtt_stats_.LastProcessedRtt());
EXPECT_EQ(0U, sender_.impl_->rtt_ms());
sender_.impl_->Process();
EXPECT_EQ(2 * kOneWayNetworkDelayMs, sender_.rtt_stats_.LastProcessedRtt());
EXPECT_EQ(2 * kOneWayNetworkDelayMs, sender_.impl_->rtt_ms());
}
TEST_F(RtpRtcpImplTest, SetRtcpXrRrtrStatus) {
EXPECT_FALSE(receiver_.impl_->RtcpXrRrtrStatus());
receiver_.impl_->SetRtcpXrRrtrStatus(true);
EXPECT_TRUE(receiver_.impl_->RtcpXrRrtrStatus());
}
TEST_F(RtpRtcpImplTest, RttForReceiverOnly) {
receiver_.impl_->SetRtcpXrRrtrStatus(true);
// Receiver module should send a Receiver time reference report (RTRR).
EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpReport));
// Sender module should send a response to the last received RTRR (DLRR).
clock_.AdvanceTimeMilliseconds(1000);
EXPECT_EQ(0, sender_.impl_->SendRTCP(kRtcpReport));
// Verify RTT.
EXPECT_EQ(0U, receiver_.rtt_stats_.LastProcessedRtt());
EXPECT_EQ(0U, receiver_.impl_->rtt_ms());
receiver_.impl_->Process();
EXPECT_EQ(2 * kOneWayNetworkDelayMs, receiver_.rtt_stats_.LastProcessedRtt());
EXPECT_EQ(2 * kOneWayNetworkDelayMs, receiver_.impl_->rtt_ms());
}
TEST_F(RtpRtcpImplTest, RtcpPacketTypeCounter_Nack) {
EXPECT_EQ(-1, receiver_.RtcpSent().first_packet_time_ms);
EXPECT_EQ(-1, sender_.RtcpReceived().first_packet_time_ms);
EXPECT_EQ(0U, sender_.RtcpReceived().nack_packets);
EXPECT_EQ(0U, receiver_.RtcpSent().nack_packets);
// Receive module sends a NACK.
const uint16_t kNackLength = 1;
uint16_t nack_list[kNackLength] = {123};
EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, receiver_.RtcpSent().nack_packets);
EXPECT_GT(receiver_.RtcpSent().first_packet_time_ms, -1);
// Send module receives the NACK.
EXPECT_EQ(1U, sender_.RtcpReceived().nack_packets);
EXPECT_GT(sender_.RtcpReceived().first_packet_time_ms, -1);
}
TEST_F(RtpRtcpImplTest, RtcpPacketTypeCounter_FirAndPli) {
EXPECT_EQ(0U, sender_.RtcpReceived().fir_packets);
EXPECT_EQ(0U, receiver_.RtcpSent().fir_packets);
// Receive module sends a FIR.
EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpFir));
EXPECT_EQ(1U, receiver_.RtcpSent().fir_packets);
// Send module receives the FIR.
EXPECT_EQ(1U, sender_.RtcpReceived().fir_packets);
// Receive module sends a FIR and PLI.
EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpFir | kRtcpPli));
EXPECT_EQ(2U, receiver_.RtcpSent().fir_packets);
EXPECT_EQ(1U, receiver_.RtcpSent().pli_packets);
// Send module receives the FIR and PLI.
EXPECT_EQ(2U, sender_.RtcpReceived().fir_packets);
EXPECT_EQ(1U, sender_.RtcpReceived().pli_packets);
}
TEST_F(RtpRtcpImplTest, AddStreamDataCounters) {
StreamDataCounters rtp;
const int64_t kStartTimeMs = 1;
rtp.first_packet_time_ms = kStartTimeMs;
rtp.packets = 1;
rtp.bytes = 1;
rtp.header_bytes = 2;
rtp.padding_bytes = 3;
EXPECT_EQ(rtp.TotalBytes(), rtp.bytes + rtp.header_bytes + rtp.padding_bytes);
StreamDataCounters rtp2;
rtp2.first_packet_time_ms = -1;
rtp2.packets = 10;
rtp2.bytes = 10;
rtp2.retransmitted_header_bytes = 4;
rtp2.retransmitted_bytes = 5;
rtp2.retransmitted_padding_bytes = 6;
rtp2.retransmitted_packets = 7;
rtp2.fec_packets = 8;
StreamDataCounters sum = rtp;
sum.Add(rtp2);
EXPECT_EQ(kStartTimeMs, sum.first_packet_time_ms);
EXPECT_EQ(11U, sum.packets);
EXPECT_EQ(11U, sum.bytes);
EXPECT_EQ(2U, sum.header_bytes);
EXPECT_EQ(3U, sum.padding_bytes);
EXPECT_EQ(4U, sum.retransmitted_header_bytes);
EXPECT_EQ(5U, sum.retransmitted_bytes);
EXPECT_EQ(6U, sum.retransmitted_padding_bytes);
EXPECT_EQ(7U, sum.retransmitted_packets);
EXPECT_EQ(8U, sum.fec_packets);
EXPECT_EQ(sum.TotalBytes(), rtp.TotalBytes() + rtp2.TotalBytes());
StreamDataCounters rtp3;
rtp3.first_packet_time_ms = kStartTimeMs + 10;
sum.Add(rtp3);
EXPECT_EQ(kStartTimeMs, sum.first_packet_time_ms); // Holds oldest time.
}
TEST_F(RtpRtcpImplTest, SendsInitialNackList) {
// Send module sends a NACK.
const uint16_t kNackLength = 1;
uint16_t nack_list[kNackLength] = {123};
EXPECT_EQ(0U, sender_.RtcpSent().nack_packets);
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123));
}
TEST_F(RtpRtcpImplTest, SendsExtendedNackList) {
// Send module sends a NACK.
const uint16_t kNackLength = 1;
uint16_t nack_list[kNackLength] = {123};
EXPECT_EQ(0U, sender_.RtcpSent().nack_packets);
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123));
// Same list not re-send.
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123));
// Only extended list sent.
const uint16_t kNackExtLength = 2;
uint16_t nack_list_ext[kNackExtLength] = {123, 124};
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list_ext, kNackExtLength));
EXPECT_EQ(2U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(124));
}
TEST_F(RtpRtcpImplTest, ReSendsNackListAfterRttMs) {
sender_.transport_.SimulateNetworkDelay(0, &clock_);
// Send module sends a NACK.
const uint16_t kNackLength = 2;
uint16_t nack_list[kNackLength] = {123, 125};
EXPECT_EQ(0U, sender_.RtcpSent().nack_packets);
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123, 125));
// Same list not re-send, rtt interval has not passed.
const int kStartupRttMs = 100;
clock_.AdvanceTimeMilliseconds(kStartupRttMs);
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, sender_.RtcpSent().nack_packets);
// Rtt interval passed, full list sent.
clock_.AdvanceTimeMilliseconds(1);
EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(2U, sender_.RtcpSent().nack_packets);
EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123, 125));
}
TEST_F(RtpRtcpImplTest, UniqueNackRequests) {
receiver_.transport_.SimulateNetworkDelay(0, &clock_);
EXPECT_EQ(0U, receiver_.RtcpSent().nack_packets);
EXPECT_EQ(0U, receiver_.RtcpSent().nack_requests);
EXPECT_EQ(0U, receiver_.RtcpSent().unique_nack_requests);
EXPECT_EQ(0, receiver_.RtcpSent().UniqueNackRequestsInPercent());
// Receive module sends NACK request.
const uint16_t kNackLength = 4;
uint16_t nack_list[kNackLength] = {10, 11, 13, 18};
EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list, kNackLength));
EXPECT_EQ(1U, receiver_.RtcpSent().nack_packets);
EXPECT_EQ(4U, receiver_.RtcpSent().nack_requests);
EXPECT_EQ(4U, receiver_.RtcpSent().unique_nack_requests);
EXPECT_THAT(receiver_.LastNackListSent(), ElementsAre(10, 11, 13, 18));
// Send module receives the request.
EXPECT_EQ(1U, sender_.RtcpReceived().nack_packets);
EXPECT_EQ(4U, sender_.RtcpReceived().nack_requests);
EXPECT_EQ(4U, sender_.RtcpReceived().unique_nack_requests);
EXPECT_EQ(100, sender_.RtcpReceived().UniqueNackRequestsInPercent());
// Receive module sends new request with duplicated packets.
const int kStartupRttMs = 100;
clock_.AdvanceTimeMilliseconds(kStartupRttMs + 1);
const uint16_t kNackLength2 = 4;
uint16_t nack_list2[kNackLength2] = {11, 18, 20, 21};
EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list2, kNackLength2));
EXPECT_EQ(2U, receiver_.RtcpSent().nack_packets);
EXPECT_EQ(8U, receiver_.RtcpSent().nack_requests);
EXPECT_EQ(6U, receiver_.RtcpSent().unique_nack_requests);
EXPECT_THAT(receiver_.LastNackListSent(), ElementsAre(11, 18, 20, 21));
// Send module receives the request.
EXPECT_EQ(2U, sender_.RtcpReceived().nack_packets);
EXPECT_EQ(8U, sender_.RtcpReceived().nack_requests);
EXPECT_EQ(6U, sender_.RtcpReceived().unique_nack_requests);
EXPECT_EQ(75, sender_.RtcpReceived().UniqueNackRequestsInPercent());
}
class RtpSendingTestTransport : public Transport {
public:
void ResetCounters() { bytes_received_.clear(); }
virtual int SendPacket(int channel,
const void* data,
size_t length) OVERRIDE {
RTPHeader header;
scoped_ptr<RtpHeaderParser> parser(RtpHeaderParser::Create());
EXPECT_TRUE(parser->Parse(static_cast<const uint8_t*>(data),
static_cast<size_t>(length),
&header));
bytes_received_[header.ssrc] += length;
++packets_received_[header.ssrc];
return static_cast<int>(length);
}
virtual int SendRTCPPacket(int channel,
const void* data,
size_t length) OVERRIDE {
return static_cast<int>(length);
}
int GetPacketsReceived(uint32_t ssrc) const {
std::map<uint32_t, int>::const_iterator it = packets_received_.find(ssrc);
if (it == packets_received_.end())
return 0;
return it->second;
}
int GetBytesReceived(uint32_t ssrc) const {
std::map<uint32_t, int>::const_iterator it = bytes_received_.find(ssrc);
if (it == bytes_received_.end())
return 0;
return it->second;
}
int GetTotalBytesReceived() const {
int sum = 0;
for (std::map<uint32_t, int>::const_iterator it = bytes_received_.begin();
it != bytes_received_.end();
++it) {
sum += it->second;
}
return sum;
}
private:
std::map<uint32_t, int> bytes_received_;
std::map<uint32_t, int> packets_received_;
};
class RtpSendingTest : public ::testing::Test {
protected:
// Map from SSRC to number of received packets and bytes.
typedef std::map<uint32_t, std::pair<int, int> > PaddingMap;
RtpSendingTest() {
// Send module.
RtpRtcp::Configuration config;
config.audio = false;
config.clock = Clock::GetRealTimeClock();
config.outgoing_transport = &transport_;
config.receive_statistics = receive_statistics_.get();
config.rtt_stats = &rtt_stats_;
config.paced_sender = &pacer_;
memset(&codec_, 0, sizeof(VideoCodec));
codec_.plType = 100;
strncpy(codec_.plName, "VP8", 3);
codec_.numberOfSimulcastStreams = 3;
codec_.simulcastStream[0].width = 320;
codec_.simulcastStream[0].height = 180;
codec_.simulcastStream[0].maxBitrate = 300;
codec_.simulcastStream[1].width = 640;
codec_.simulcastStream[1].height = 360;
codec_.simulcastStream[1].maxBitrate = 600;
codec_.simulcastStream[2].width = 1280;
codec_.simulcastStream[2].height = 720;
codec_.simulcastStream[2].maxBitrate = 1200;
// We need numberOfSimulcastStreams + 1 RTP modules since we need one
// default module.
for (int i = 0; i < codec_.numberOfSimulcastStreams + 1; ++i) {
RtpRtcp* sender = RtpRtcp::CreateRtpRtcp(config);
EXPECT_EQ(0, sender->RegisterSendPayload(codec_));
EXPECT_EQ(0, sender->SetSendingStatus(true));
sender->SetSendingMediaStatus(true);
sender->SetSSRC(kSenderSsrc + i);
sender->SetRemoteSSRC(kReceiverSsrc + i);
senders_.push_back(sender);
config.default_module = senders_[0];
}
std::vector<uint32_t> bitrates;
bitrates.push_back(codec_.simulcastStream[0].maxBitrate);
bitrates.push_back(codec_.simulcastStream[1].maxBitrate);
bitrates.push_back(codec_.simulcastStream[2].maxBitrate);
senders_[0]->SetTargetSendBitrate(bitrates);
}
~RtpSendingTest() {
for (int i = senders_.size() - 1; i >= 0; --i) {
delete senders_[i];
}
}
void SendFrameOnSender(int sender_index,
const uint8_t* payload,
size_t length) {
RTPVideoHeader rtp_video_header = {
codec_.simulcastStream[sender_index].width,
codec_.simulcastStream[sender_index].height,
true,
0,
kRtpVideoVp8,
{}};
uint32_t seq_num = 0;
uint32_t ssrc = 0;
int64_t capture_time_ms = 0;
bool retransmission = false;
EXPECT_CALL(pacer_, SendPacket(_, _, _, _, _, _))
.WillRepeatedly(DoAll(SaveArg<1>(&ssrc),
SaveArg<2>(&seq_num),
SaveArg<3>(&capture_time_ms),
SaveArg<5>(&retransmission),
Return(true)));
EXPECT_EQ(0,
senders_[sender_index]->SendOutgoingData(kVideoFrameKey,
codec_.plType,
0,
0,
payload,
length,
NULL,
&rtp_video_header));
EXPECT_TRUE(senders_[sender_index]->TimeToSendPacket(
ssrc, seq_num, capture_time_ms, retransmission));
}
void ExpectPadding(const PaddingMap& expected_padding) {
int expected_total_bytes = 0;
for (PaddingMap::const_iterator it = expected_padding.begin();
it != expected_padding.end();
++it) {
int packets_received = transport_.GetBytesReceived(it->first);
if (it->second.first > 0) {
EXPECT_GE(packets_received, it->second.first)
<< "On SSRC: " << it->first;
}
int bytes_received = transport_.GetBytesReceived(it->first);
expected_total_bytes += bytes_received;
if (it->second.second > 0) {
EXPECT_GE(bytes_received, it->second.second)
<< "On SSRC: " << it->first;
} else {
EXPECT_EQ(0, bytes_received) << "On SSRC: " << it->first;
}
}
EXPECT_EQ(expected_total_bytes, transport_.GetTotalBytesReceived());
}
scoped_ptr<ReceiveStatistics> receive_statistics_;
RtcpRttStatsTestImpl rtt_stats_;
std::vector<RtpRtcp*> senders_;
RtpSendingTestTransport transport_;
NiceMock<MockPacedSender> pacer_;
VideoCodec codec_;
};
TEST_F(RtpSendingTest, DISABLED_RoundRobinPadding) {
// We have to send on an SSRC to be allowed to pad, since a marker bit must
// be sent prior to padding packets.
const uint8_t payload[200] = {0};
for (int i = 0; i < codec_.numberOfSimulcastStreams; ++i) {
SendFrameOnSender(i + 1, payload, sizeof(payload));
}
transport_.ResetCounters();
senders_[0]->TimeToSendPadding(500);
PaddingMap expected_padding;
expected_padding[kSenderSsrc + 1] = std::make_pair(2, 500);
expected_padding[kSenderSsrc + 2] = std::make_pair(0, 0);
expected_padding[kSenderSsrc + 3] = std::make_pair(0, 0);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1000);
expected_padding[kSenderSsrc + 2] = std::make_pair(4, 1000);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1500);
expected_padding[kSenderSsrc + 3] = std::make_pair(6, 1500);
ExpectPadding(expected_padding);
}
TEST_F(RtpSendingTest, DISABLED_RoundRobinPaddingRtx) {
// Enable RTX to allow padding to be sent prior to media.
for (int i = 1; i < codec_.numberOfSimulcastStreams + 1; ++i) {
// Abs-send-time is needed to be allowed to send padding prior to media,
// as otherwise the timestmap used for BWE will be broken.
senders_[i]->RegisterSendRtpHeaderExtension(kRtpExtensionAbsoluteSendTime,
1);
senders_[i]->SetRtxSendPayloadType(96);
senders_[i]->SetRtxSsrc(kSenderRtxSsrc + i);
senders_[i]->SetRTXSendStatus(kRtxRetransmitted);
}
transport_.ResetCounters();
senders_[0]->TimeToSendPadding(500);
PaddingMap expected_padding;
expected_padding[kSenderSsrc + 1] = std::make_pair(0, 0);
expected_padding[kSenderSsrc + 2] = std::make_pair(0, 0);
expected_padding[kSenderSsrc + 3] = std::make_pair(0, 0);
expected_padding[kSenderRtxSsrc + 1] = std::make_pair(2, 500);
expected_padding[kSenderRtxSsrc + 2] = std::make_pair(0, 0);
expected_padding[kSenderRtxSsrc + 3] = std::make_pair(0, 0);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1000);
expected_padding[kSenderRtxSsrc + 2] = std::make_pair(4, 500);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1500);
expected_padding[kSenderRtxSsrc + 3] = std::make_pair(6, 500);
ExpectPadding(expected_padding);
}
TEST_F(RtpSendingTest, DISABLED_RoundRobinPaddingRtxRedundantPayloads) {
for (int i = 1; i < codec_.numberOfSimulcastStreams + 1; ++i) {
senders_[i]->SetRtxSendPayloadType(96);
senders_[i]->SetRtxSsrc(kSenderRtxSsrc + i);
senders_[i]->SetRTXSendStatus(kRtxRetransmitted | kRtxRedundantPayloads);
senders_[i]->SetStorePacketsStatus(true, 100);
}
// First send payloads so that we have something to retransmit.
const size_t kPayloadSize = 500;
const uint8_t payload[kPayloadSize] = {0};
for (int i = 0; i < codec_.numberOfSimulcastStreams; ++i) {
SendFrameOnSender(i + 1, payload, sizeof(payload));
}
transport_.ResetCounters();
senders_[0]->TimeToSendPadding(500);
PaddingMap expected_padding;
expected_padding[kSenderSsrc + 1] = std::make_pair<int, int>(0, 0);
expected_padding[kSenderSsrc + 2] = std::make_pair<int, int>(0, 0);
expected_padding[kSenderSsrc + 3] = std::make_pair<int, int>(0, 0);
expected_padding[kSenderRtxSsrc + 1] = std::make_pair<int, int>(1, 500);
expected_padding[kSenderRtxSsrc + 2] = std::make_pair<int, int>(0, 0);
expected_padding[kSenderRtxSsrc + 3] = std::make_pair<int, int>(0, 0);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1000);
expected_padding[kSenderRtxSsrc + 2] = std::make_pair<int, int>(2, 1000);
ExpectPadding(expected_padding);
senders_[0]->TimeToSendPadding(1500);
expected_padding[kSenderRtxSsrc + 3] = std::make_pair<int, int>(3, 1500);
ExpectPadding(expected_padding);
}
} // namespace webrtc
|