1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.h"
#include <assert.h>
#include <stdlib.h> // NULL
#include <algorithm>
#include <limits>
namespace webrtc {
PartitionTreeNode::PartitionTreeNode(PartitionTreeNode* parent,
const size_t* size_vector,
size_t num_partitions,
size_t this_size)
: parent_(parent),
this_size_(this_size),
size_vector_(size_vector),
num_partitions_(num_partitions),
max_parent_size_(0),
min_parent_size_(std::numeric_limits<int>::max()),
packet_start_(false) {
// If |this_size_| > INT_MAX, Cost() and CreateChildren() won't work properly.
assert(this_size_ <= static_cast<size_t>(std::numeric_limits<int>::max()));
children_[kLeftChild] = NULL;
children_[kRightChild] = NULL;
}
PartitionTreeNode* PartitionTreeNode::CreateRootNode(const size_t* size_vector,
size_t num_partitions) {
PartitionTreeNode* root_node =
new PartitionTreeNode(NULL, &size_vector[1], num_partitions - 1,
size_vector[0]);
root_node->set_packet_start(true);
return root_node;
}
PartitionTreeNode::~PartitionTreeNode() {
delete children_[kLeftChild];
delete children_[kRightChild];
}
int PartitionTreeNode::Cost(size_t penalty) {
int cost = 0;
if (num_partitions_ == 0) {
// This is a solution node.
cost = std::max(max_parent_size_, this_size_int()) -
std::min(min_parent_size_, this_size_int());
} else {
cost = std::max(max_parent_size_, this_size_int()) - min_parent_size_;
}
return cost + NumPackets() * penalty;
}
bool PartitionTreeNode::CreateChildren(size_t max_size) {
assert(max_size > 0);
bool children_created = false;
if (num_partitions_ > 0) {
if (this_size_ + size_vector_[0] <= max_size) {
assert(!children_[kLeftChild]);
children_[kLeftChild] =
new PartitionTreeNode(this,
&size_vector_[1],
num_partitions_ - 1,
this_size_ + size_vector_[0]);
children_[kLeftChild]->set_max_parent_size(max_parent_size_);
children_[kLeftChild]->set_min_parent_size(min_parent_size_);
// "Left" child is continuation of same packet.
children_[kLeftChild]->set_packet_start(false);
children_created = true;
}
if (this_size_ > 0) {
assert(!children_[kRightChild]);
children_[kRightChild] = new PartitionTreeNode(this,
&size_vector_[1],
num_partitions_ - 1,
size_vector_[0]);
children_[kRightChild]->set_max_parent_size(
std::max(max_parent_size_, this_size_int()));
children_[kRightChild]->set_min_parent_size(
std::min(min_parent_size_, this_size_int()));
// "Right" child starts a new packet.
children_[kRightChild]->set_packet_start(true);
children_created = true;
}
}
return children_created;
}
size_t PartitionTreeNode::NumPackets() {
if (parent_ == NULL) {
// Root node is a "right" child by definition.
return 1;
}
if (parent_->children_[kLeftChild] == this) {
// This is a "left" child.
return parent_->NumPackets();
} else {
// This is a "right" child.
return 1 + parent_->NumPackets();
}
}
PartitionTreeNode* PartitionTreeNode::GetOptimalNode(size_t max_size,
size_t penalty) {
CreateChildren(max_size);
PartitionTreeNode* left = children_[kLeftChild];
PartitionTreeNode* right = children_[kRightChild];
if ((left == NULL) && (right == NULL)) {
// This is a solution node; return it.
return this;
} else if (left == NULL) {
// One child empty, return the other.
return right->GetOptimalNode(max_size, penalty);
} else if (right == NULL) {
// One child empty, return the other.
return left->GetOptimalNode(max_size, penalty);
} else {
PartitionTreeNode* first;
PartitionTreeNode* second;
if (left->Cost(penalty) <= right->Cost(penalty)) {
first = left;
second = right;
} else {
first = right;
second = left;
}
first = first->GetOptimalNode(max_size, penalty);
if (second->Cost(penalty) <= first->Cost(penalty)) {
second = second->GetOptimalNode(max_size, penalty);
// Compare cost estimate for "second" with actual cost for "first".
if (second->Cost(penalty) < first->Cost(penalty)) {
return second;
}
}
return first;
}
}
Vp8PartitionAggregator::Vp8PartitionAggregator(
const RTPFragmentationHeader& fragmentation,
size_t first_partition_idx, size_t last_partition_idx)
: root_(NULL),
num_partitions_(last_partition_idx - first_partition_idx + 1),
size_vector_(new size_t[num_partitions_]),
largest_partition_size_(0) {
assert(last_partition_idx >= first_partition_idx);
assert(last_partition_idx < fragmentation.fragmentationVectorSize);
for (size_t i = 0; i < num_partitions_; ++i) {
size_vector_[i] =
fragmentation.fragmentationLength[i + first_partition_idx];
largest_partition_size_ = std::max(largest_partition_size_,
size_vector_[i]);
}
root_ = PartitionTreeNode::CreateRootNode(size_vector_, num_partitions_);
}
Vp8PartitionAggregator::~Vp8PartitionAggregator() {
delete [] size_vector_;
delete root_;
}
void Vp8PartitionAggregator::SetPriorMinMax(int min_size, int max_size) {
assert(root_);
assert(min_size >= 0);
assert(max_size >= min_size);
root_->set_min_parent_size(min_size);
root_->set_max_parent_size(max_size);
}
Vp8PartitionAggregator::ConfigVec
Vp8PartitionAggregator::FindOptimalConfiguration(size_t max_size,
size_t penalty) {
assert(root_);
assert(max_size >= largest_partition_size_);
PartitionTreeNode* opt = root_->GetOptimalNode(max_size, penalty);
ConfigVec config_vector(num_partitions_, 0);
PartitionTreeNode* temp_node = opt;
size_t packet_index = opt->NumPackets();
for (size_t i = num_partitions_; i > 0; --i) {
assert(packet_index > 0);
assert(temp_node != NULL);
config_vector[i - 1] = packet_index - 1;
if (temp_node->packet_start()) --packet_index;
temp_node = temp_node->parent();
}
return config_vector;
}
void Vp8PartitionAggregator::CalcMinMax(const ConfigVec& config,
int* min_size, int* max_size) const {
if (*min_size < 0) {
*min_size = std::numeric_limits<int>::max();
}
if (*max_size < 0) {
*max_size = 0;
}
size_t i = 0;
while (i < config.size()) {
size_t this_size = 0;
size_t j = i;
while (j < config.size() && config[i] == config[j]) {
this_size += size_vector_[j];
++j;
}
i = j;
if (this_size < static_cast<size_t>(*min_size)) {
*min_size = this_size;
}
if (this_size > static_cast<size_t>(*max_size)) {
*max_size = this_size;
}
}
}
size_t Vp8PartitionAggregator::CalcNumberOfFragments(
size_t large_partition_size,
size_t max_payload_size,
size_t penalty,
int min_size,
int max_size) {
assert(large_partition_size > 0);
assert(max_payload_size > 0);
assert(min_size != 0);
assert(min_size <= max_size);
assert(max_size <= static_cast<int>(max_payload_size));
// Divisions with rounding up.
const size_t min_number_of_fragments =
(large_partition_size + max_payload_size - 1) / max_payload_size;
if (min_size < 0 || max_size < 0) {
// No aggregates produced, so we do not have any size boundaries.
// Simply split in as few partitions as possible.
return min_number_of_fragments;
}
const size_t max_number_of_fragments =
(large_partition_size + min_size - 1) / min_size;
int num_fragments = -1;
size_t best_cost = std::numeric_limits<size_t>::max();
for (size_t n = min_number_of_fragments; n <= max_number_of_fragments; ++n) {
// Round up so that we use the largest fragment.
size_t fragment_size = (large_partition_size + n - 1) / n;
size_t cost = 0;
if (fragment_size < static_cast<size_t>(min_size)) {
cost = min_size - fragment_size + n * penalty;
} else if (fragment_size > static_cast<size_t>(max_size)) {
cost = fragment_size - max_size + n * penalty;
} else {
cost = n * penalty;
}
if (fragment_size <= max_payload_size && cost < best_cost) {
num_fragments = n;
best_cost = cost;
}
}
assert(num_fragments > 0);
// TODO(mflodman) Assert disabled since it's falsely triggered, see issue 293.
//assert(large_partition_size / num_fragments + 1 <= max_payload_size);
return num_fragments;
}
} // namespace
|