File: screenshare_layers.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (184 lines) | stat: -rw-r--r-- 6,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
*  Use of this source code is governed by a BSD-style license
*  that can be found in the LICENSE file in the root of the source
*  tree. An additional intellectual property rights grant can be found
*  in the file PATENTS.  All contributing project authors may
*  be found in the AUTHORS file in the root of the source tree.
*/

#include "webrtc/modules/video_coding/codecs/vp8/screenshare_layers.h"

#include <stdlib.h>

#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h"
#include "webrtc/system_wrappers/interface/field_trial.h"

namespace webrtc {

enum { kOneSecond90Khz = 90000 };

const double ScreenshareLayers::kMaxTL0FpsReduction = 2.5;
const double ScreenshareLayers::kAcceptableTargetOvershoot = 2.0;

ScreenshareLayers::ScreenshareLayers(int num_temporal_layers,
                                     uint8_t initial_tl0_pic_idx,
                                     FrameDropper* tl0_frame_dropper,
                                     FrameDropper* tl1_frame_dropper)
    : tl0_frame_dropper_(tl0_frame_dropper),
      tl1_frame_dropper_(tl1_frame_dropper),
      number_of_temporal_layers_(num_temporal_layers),
      last_base_layer_sync_(false),
      tl0_pic_idx_(initial_tl0_pic_idx),
      active_layer_(0),
      framerate_(5),
      last_sync_timestamp_(-1) {
  assert(num_temporal_layers > 0);
  assert(num_temporal_layers <= 2);
  assert(tl0_frame_dropper && tl1_frame_dropper);
}

int ScreenshareLayers::CurrentLayerId() const {
  // Codec does not use temporal layers for screenshare.
  return 0;
}

int ScreenshareLayers::EncodeFlags(uint32_t timestamp) {
  if (number_of_temporal_layers_ <= 1) {
    // No flags needed for 1 layer screenshare.
    return 0;
  }
  CalculateFramerate(timestamp);
  int flags = 0;
  // Note that ARF on purpose isn't used in this scheme since it is allocated
  // for the last key frame to make key frame caching possible.
  if (tl0_frame_dropper_->DropFrame()) {
    // Must drop TL0, encode TL1 instead.
    if (tl1_frame_dropper_->DropFrame()) {
      // Must drop both TL0 and TL1.
      flags = -1;
    } else {
      active_layer_ = 1;
      if (TimeToSync(timestamp)) {
        last_sync_timestamp_ = timestamp;
        // Allow predicting from only TL0 to allow participants to switch to the
        // high bitrate stream. This means predicting only from the LAST
        // reference frame, but only updating GF to not corrupt TL0.
        flags = VP8_EFLAG_NO_REF_ARF;
        flags |= VP8_EFLAG_NO_REF_GF;
        flags |= VP8_EFLAG_NO_UPD_ARF;
        flags |= VP8_EFLAG_NO_UPD_LAST;
      } else {
        // Allow predicting from both TL0 and TL1.
        flags = VP8_EFLAG_NO_REF_ARF;
        flags |= VP8_EFLAG_NO_UPD_ARF;
        flags |= VP8_EFLAG_NO_UPD_LAST;
      }
    }
  } else {
    active_layer_ = 0;
    // Since this is TL0 we only allow updating and predicting from the LAST
    // reference frame.
    flags = VP8_EFLAG_NO_UPD_GF;
    flags |= VP8_EFLAG_NO_UPD_ARF;
    flags |= VP8_EFLAG_NO_REF_GF;
    flags |= VP8_EFLAG_NO_REF_ARF;
  }
  // Make sure both frame droppers leak out bits.
  tl0_frame_dropper_->Leak(framerate_);
  tl1_frame_dropper_->Leak(framerate_);
  return flags;
}

bool ScreenshareLayers::ConfigureBitrates(int bitrate_kbit,
                                          int max_bitrate_kbit,
                                          int framerate,
                                          vpx_codec_enc_cfg_t* cfg) {
  if (framerate > 0) {
    framerate_ = framerate;
  }
  tl0_frame_dropper_->SetRates(bitrate_kbit, framerate_);
  tl1_frame_dropper_->SetRates(max_bitrate_kbit, framerate_);

  if (cfg != NULL && TargetBitrateExperimentEnabled()) {
    // Calculate a codec target bitrate. This may be higher than TL0, gaining
    // quality at the expense of frame rate at TL0. Constraints:
    // - TL0 frame rate should not be less than framerate / kMaxTL0FpsReduction.
    // - Target rate * kAcceptableTargetOvershoot should not exceed TL1 rate.
    double target_bitrate =
        std::min(bitrate_kbit * kMaxTL0FpsReduction,
                 max_bitrate_kbit / kAcceptableTargetOvershoot);
    cfg->rc_target_bitrate =
        std::max(static_cast<unsigned int>(bitrate_kbit),
                 static_cast<unsigned int>(target_bitrate + 0.5));
  }

  return true;
}

void ScreenshareLayers::FrameEncoded(unsigned int size, uint32_t timestamp) {
  if (active_layer_ == 0) {
    tl0_frame_dropper_->Fill(size, true);
  }
  tl1_frame_dropper_->Fill(size, true);
}

void ScreenshareLayers::PopulateCodecSpecific(bool base_layer_sync,
                                              CodecSpecificInfoVP8 *vp8_info,
                                              uint32_t timestamp) {
  if (number_of_temporal_layers_ == 1) {
    vp8_info->temporalIdx = kNoTemporalIdx;
    vp8_info->layerSync = false;
    vp8_info->tl0PicIdx = kNoTl0PicIdx;
  } else {
    vp8_info->temporalIdx = active_layer_;
    if (base_layer_sync) {
      vp8_info->temporalIdx = 0;
      last_sync_timestamp_ = timestamp;
    } else if (last_base_layer_sync_ && vp8_info->temporalIdx != 0) {
      // Regardless of pattern the frame after a base layer sync will always
      // be a layer sync.
      last_sync_timestamp_ = timestamp;
    }
    vp8_info->layerSync = (last_sync_timestamp_ == timestamp);
    if (vp8_info->temporalIdx == 0) {
      tl0_pic_idx_++;
    }
    last_base_layer_sync_ = base_layer_sync;
    vp8_info->tl0PicIdx = tl0_pic_idx_;
  }
}

bool ScreenshareLayers::TimeToSync(uint32_t timestamp) const {
  const uint32_t timestamp_diff = timestamp - last_sync_timestamp_;
  return last_sync_timestamp_ < 0 || timestamp_diff > kOneSecond90Khz;
}

void ScreenshareLayers::CalculateFramerate(uint32_t timestamp) {
  timestamp_list_.push_front(timestamp);
  // Remove timestamps older than 1 second from the list.
  uint32_t timestamp_diff = timestamp - timestamp_list_.back();
  while (timestamp_diff > kOneSecond90Khz) {
    timestamp_list_.pop_back();
    timestamp_diff = timestamp - timestamp_list_.back();
  }
  // If we have encoded frames within the last second, that number of frames
  // is a reasonable first estimate of the framerate.
  framerate_ = timestamp_list_.size();
  if (timestamp_diff > 0) {
    // Estimate the framerate by dividing the number of timestamp diffs with
    // the sum of the timestamp diffs (with rounding).
    framerate_ = (kOneSecond90Khz * (timestamp_list_.size() - 1) +
        timestamp_diff / 2) / timestamp_diff;
  }
}

bool ScreenshareLayers::TargetBitrateExperimentEnabled() {
  std::string group =
      field_trial::FindFullName("WebRTC-ScreencastTargetBitrateOvershoot");
  return group == "Enabled";
}

}  // namespace webrtc