1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
#define WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
#include <algorithm>
#include <vector>
#include "webrtc/common.h"
#include "webrtc/experiments.h"
#include "webrtc/common_video/interface/i420_video_frame.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/video_coding/codecs/interface/mock/mock_video_codec_interface.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp8/temporal_layers.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "gtest/gtest.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;
namespace webrtc {
namespace testing {
const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
template<typename T> void SetExpectedValues3(T value0,
T value1,
T value2,
T* expected_values) {
expected_values[0] = value0;
expected_values[1] = value1;
expected_values[2] = value2;
}
class Vp8TestEncodedImageCallback : public EncodedImageCallback {
public:
Vp8TestEncodedImageCallback()
: picture_id_(-1) {
memset(temporal_layer_, -1, sizeof(temporal_layer_));
memset(layer_sync_, false, sizeof(layer_sync_));
}
~Vp8TestEncodedImageCallback() {
delete [] encoded_key_frame_._buffer;
delete [] encoded_frame_._buffer;
}
virtual int32_t Encoded(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Only store the base layer.
if (codec_specific_info->codecSpecific.VP8.simulcastIdx == 0) {
if (encoded_image._frameType == kKeyFrame) {
delete [] encoded_key_frame_._buffer;
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
encoded_key_frame_._size = encoded_image._size;
encoded_key_frame_._length = encoded_image._length;
encoded_key_frame_._frameType = kKeyFrame;
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
memcpy(encoded_key_frame_._buffer,
encoded_image._buffer,
encoded_image._length);
} else {
delete [] encoded_frame_._buffer;
encoded_frame_._buffer = new uint8_t[encoded_image._size];
encoded_frame_._size = encoded_image._size;
encoded_frame_._length = encoded_image._length;
memcpy(encoded_frame_._buffer,
encoded_image._buffer,
encoded_image._length);
}
}
picture_id_ = codec_specific_info->codecSpecific.VP8.pictureId;
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.layerSync;
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.temporalIdx;
return 0;
}
void GetLastEncodedFrameInfo(int* picture_id, int* temporal_layer,
bool* layer_sync, int stream) {
*picture_id = picture_id_;
*temporal_layer = temporal_layer_[stream];
*layer_sync = layer_sync_[stream];
}
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
*encoded_key_frame = encoded_key_frame_;
}
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
*encoded_frame = encoded_frame_;
}
private:
EncodedImage encoded_key_frame_;
EncodedImage encoded_frame_;
int picture_id_;
int temporal_layer_[kNumberOfSimulcastStreams];
bool layer_sync_[kNumberOfSimulcastStreams];
};
class Vp8TestDecodedImageCallback : public DecodedImageCallback {
public:
Vp8TestDecodedImageCallback()
: decoded_frames_(0) {
}
virtual int32_t Decoded(I420VideoFrame& decoded_image) {
last_decoded_frame_.CopyFrame(decoded_image);
for (int i = 0; i < decoded_image.width(); ++i) {
EXPECT_NEAR(kColorY, decoded_image.buffer(kYPlane)[i], 1);
}
// TODO(mikhal): Verify the difference between U,V and the original.
for (int i = 0; i < ((decoded_image.width() + 1) / 2); ++i) {
EXPECT_NEAR(kColorU, decoded_image.buffer(kUPlane)[i], 4);
EXPECT_NEAR(kColorV, decoded_image.buffer(kVPlane)[i], 4);
}
decoded_frames_++;
return 0;
}
int DecodedFrames() {
return decoded_frames_;
}
void GetLastDecodedFrame(I420VideoFrame* decoded_frame) {
decoded_frame->SwapFrame(&last_decoded_frame_);
}
private:
int decoded_frames_;
I420VideoFrame last_decoded_frame_;
};
class SkipEncodingUnusedStreamsTest {
public:
std::vector<unsigned int> RunTest(VP8Encoder* encoder,
VideoCodec* settings,
uint32_t target_bitrate) {
Config options;
SpyingTemporalLayersFactory* spy_factory =
new SpyingTemporalLayersFactory();
options.Set<TemporalLayers::Factory>(spy_factory);
settings->extra_options = &options;
EXPECT_EQ(0, encoder->InitEncode(settings, 1, 1200));
encoder->SetRates(target_bitrate, 30);
std::vector<unsigned int> configured_bitrates;
for (std::vector<TemporalLayers*>::const_iterator it =
spy_factory->spying_layers_.begin();
it != spy_factory->spying_layers_.end();
++it) {
configured_bitrates.push_back(
static_cast<SpyingTemporalLayers*>(*it)->configured_bitrate_);
}
return configured_bitrates;
}
class SpyingTemporalLayers : public TemporalLayers {
public:
explicit SpyingTemporalLayers(TemporalLayers* layers)
: configured_bitrate_(0), layers_(layers) {}
virtual ~SpyingTemporalLayers() { delete layers_; }
virtual int EncodeFlags(uint32_t timestamp) {
return layers_->EncodeFlags(timestamp);
}
virtual bool ConfigureBitrates(int bitrate_kbit,
int max_bitrate_kbit,
int framerate,
vpx_codec_enc_cfg_t* cfg) OVERRIDE {
configured_bitrate_ = bitrate_kbit;
return layers_->ConfigureBitrates(
bitrate_kbit, max_bitrate_kbit, framerate, cfg);
}
virtual void PopulateCodecSpecific(bool base_layer_sync,
CodecSpecificInfoVP8* vp8_info,
uint32_t timestamp) OVERRIDE {
layers_->PopulateCodecSpecific(base_layer_sync, vp8_info, timestamp);
}
virtual void FrameEncoded(unsigned int size, uint32_t timestamp) OVERRIDE {
layers_->FrameEncoded(size, timestamp);
}
virtual int CurrentLayerId() const OVERRIDE {
return layers_->CurrentLayerId();
}
int configured_bitrate_;
TemporalLayers* layers_;
};
class SpyingTemporalLayersFactory : public TemporalLayers::Factory {
public:
virtual ~SpyingTemporalLayersFactory() {}
virtual TemporalLayers* Create(int temporal_layers,
uint8_t initial_tl0_pic_idx) const OVERRIDE {
SpyingTemporalLayers* layers =
new SpyingTemporalLayers(TemporalLayers::Factory::Create(
temporal_layers, initial_tl0_pic_idx));
spying_layers_.push_back(layers);
return layers;
}
mutable std::vector<TemporalLayers*> spying_layers_;
};
};
class TestVp8Simulcast : public ::testing::Test {
public:
TestVp8Simulcast(VP8Encoder* encoder, VP8Decoder* decoder)
: encoder_(encoder),
decoder_(decoder) {}
// Creates an I420VideoFrame from |plane_colors|.
static void CreateImage(I420VideoFrame* frame,
int plane_colors[kNumOfPlanes]) {
for (int plane_num = 0; plane_num < kNumOfPlanes; ++plane_num) {
int width = (plane_num != kYPlane ? (frame->width() + 1) / 2 :
frame->width());
int height = (plane_num != kYPlane ? (frame->height() + 1) / 2 :
frame->height());
PlaneType plane_type = static_cast<PlaneType>(plane_num);
uint8_t* data = frame->buffer(plane_type);
// Setting allocated area to zero - setting only image size to
// requested values - will make it easier to distinguish between image
// size and frame size (accounting for stride).
memset(frame->buffer(plane_type), 0, frame->allocated_size(plane_type));
for (int i = 0; i < height; i++) {
memset(data, plane_colors[plane_num], width);
data += frame->stride(plane_type);
}
}
}
static void DefaultSettings(VideoCodec* settings,
const int* temporal_layer_profile) {
assert(settings);
memset(settings, 0, sizeof(VideoCodec));
strncpy(settings->plName, "VP8", 4);
settings->codecType = kVideoCodecVP8;
// 96 to 127 dynamic payload types for video codecs
settings->plType = 120;
settings->startBitrate = 300;
settings->minBitrate = 30;
settings->maxBitrate = 0;
settings->maxFramerate = 30;
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4,
kMaxBitrates[0],
kMinBitrates[0],
kTargetBitrates[0],
&settings->simulcastStream[0],
temporal_layer_profile[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2,
kMaxBitrates[1],
kMinBitrates[1],
kTargetBitrates[1],
&settings->simulcastStream[1],
temporal_layer_profile[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight,
kMaxBitrates[2],
kMinBitrates[2],
kTargetBitrates[2],
&settings->simulcastStream[2],
temporal_layer_profile[2]);
settings->codecSpecific.VP8.resilience = kResilientStream;
settings->codecSpecific.VP8.denoisingOn = true;
settings->codecSpecific.VP8.errorConcealmentOn = false;
settings->codecSpecific.VP8.automaticResizeOn = false;
settings->codecSpecific.VP8.feedbackModeOn = false;
settings->codecSpecific.VP8.frameDroppingOn = true;
settings->codecSpecific.VP8.keyFrameInterval = 3000;
}
static void ConfigureStream(int width,
int height,
int max_bitrate,
int min_bitrate,
int target_bitrate,
SimulcastStream* stream,
int num_temporal_layers) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->minBitrate = min_bitrate;
stream->targetBitrate = target_bitrate;
stream->numberOfTemporalLayers = num_temporal_layers;
stream->qpMax = 45;
}
protected:
virtual void SetUp() {
SetUpCodec(kDefaultTemporalLayerProfile);
}
virtual void SetUpCodec(const int* temporal_layer_profile) {
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
DefaultSettings(&settings_, temporal_layer_profile);
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
int half_width = (kDefaultWidth + 1) / 2;
input_frame_.CreateEmptyFrame(kDefaultWidth, kDefaultHeight,
kDefaultWidth, half_width, half_width);
memset(input_frame_.buffer(kYPlane), 0,
input_frame_.allocated_size(kYPlane));
memset(input_frame_.buffer(kUPlane), 0,
input_frame_.allocated_size(kUPlane));
memset(input_frame_.buffer(kVPlane), 0,
input_frame_.allocated_size(kVPlane));
}
virtual void TearDown() {
encoder_->Release();
decoder_->Release();
}
void ExpectStreams(VideoFrameType frame_type, int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
if (expected_video_streams >= 1) {
EXPECT_CALL(encoder_callback_, Encoded(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)), _, _)
)
.Times(1)
.WillRepeatedly(Return(0));
}
if (expected_video_streams >= 2) {
EXPECT_CALL(encoder_callback_, Encoded(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)), _, _)
)
.Times(1)
.WillRepeatedly(Return(0));
}
if (expected_video_streams >= 3) {
EXPECT_CALL(encoder_callback_, Encoded(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
Field(&EncodedImage::_encodedHeight, kDefaultHeight)), _, _))
.Times(1)
.WillRepeatedly(Return(0));
}
if (expected_video_streams < kNumberOfSimulcastStreams) {
EXPECT_CALL(encoder_callback_, Encoded(
AllOf(Field(&EncodedImage::_frameType, kSkipFrame),
Field(&EncodedImage::_length, 0)), _, _))
.Times(kNumberOfSimulcastStreams - expected_video_streams)
.WillRepeatedly(Return(0));
}
}
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers) {
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
for (int i = 0; i < num_spatial_layers; i++) {
encoder_callback->GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, i);
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
EXPECT_EQ(expected_layer_sync[i], layer_sync);
}
}
// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void TestKeyFrameRequestsOnAllStreams() {
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, kNumberOfSimulcastStreams);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
frame_types[0] = kKeyFrame;
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
frame_types[1] = kKeyFrame;
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
frame_types[2] = kKeyFrame;
ExpectStreams(kKeyFrame, kNumberOfSimulcastStreams);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kDeltaFrame);
ExpectStreams(kDeltaFrame, kNumberOfSimulcastStreams);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestPaddingAllStreams() {
// We should always encode the base layer.
encoder_->SetRates(kMinBitrates[0] - 1, 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 1);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 1);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreams() {
// We have just enough to get only the first stream and padding for two.
encoder_->SetRates(kMinBitrates[0], 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 1);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 1);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreamsOneMaxedOut() {
// We are just below limit of sending second stream, so we should get
// the first stream maxed out (at |maxBitrate|), and padding for two.
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 1);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 1);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestPaddingOneStream() {
// We have just enough to send two streams, so padding for one stream.
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 2);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 2);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestPaddingOneStreamTwoMaxedOut() {
// We are just below limit of sending third stream, so we should get
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
kMinBitrates[2] - 1, 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 2);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 2);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestSendAllStreams() {
// We have just enough to send all streams.
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
kMinBitrates[2], 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 3);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 3);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestDisablingStreams() {
// We should get three media streams.
encoder_->SetRates(kMaxBitrates[0] + kMaxBitrates[1] +
kMaxBitrates[2], 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
ExpectStreams(kKeyFrame, 3);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
ExpectStreams(kDeltaFrame, 3);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
kMinBitrates[2] / 2, 30);
ExpectStreams(kDeltaFrame, 2);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// We should only get the first stream and padding for two.
encoder_->SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
ExpectStreams(kDeltaFrame, 1);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// We don't have enough bitrate for the thumbnail stream, but we should get
// it anyway with current configuration.
encoder_->SetRates(kTargetBitrates[0] - 1, 30);
ExpectStreams(kDeltaFrame, 1);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
kMinBitrates[2] / 2, 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kKeyFrame, 2);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// We should get all three streams.
encoder_->SetRates(kTargetBitrates[0] + kTargetBitrates[1] +
kTargetBitrates[2], 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kKeyFrame, 3);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void SwitchingToOneStream(int width, int height) {
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.
settings_.codecSpecific.VP8.numberOfTemporalLayers = 1;
settings_.maxBitrate = 100;
settings_.startBitrate = 100;
settings_.width = width;
settings_.height = height;
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
settings_.simulcastStream[i].maxBitrate = 0;
settings_.simulcastStream[i].width = settings_.width;
settings_.simulcastStream[i].height = settings_.height;
}
// Setting input image to new resolution.
int half_width = (settings_.width + 1) / 2;
input_frame_.CreateEmptyFrame(settings_.width, settings_.height,
settings_.width, half_width, half_width);
memset(input_frame_.buffer(kYPlane), 0,
input_frame_.allocated_size(kYPlane));
memset(input_frame_.buffer(kUPlane), 0,
input_frame_.allocated_size(kUPlane));
memset(input_frame_.buffer(kVPlane), 0,
input_frame_.allocated_size(kVPlane));
// The for loop above did not set the bitrate of the highest layer.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
maxBitrate = 0;
// The highest layer has to correspond to the non-simulcast resolution.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
width = settings_.width;
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].
height = settings_.height;
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
// Encode one frame and verify.
encoder_->SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
std::vector<VideoFrameType> frame_types(kNumberOfSimulcastStreams,
kDeltaFrame);
EXPECT_CALL(encoder_callback_, Encoded(
AllOf(Field(&EncodedImage::_frameType, kKeyFrame),
Field(&EncodedImage::_encodedWidth, width),
Field(&EncodedImage::_encodedHeight, height)), _, _))
.Times(1)
.WillRepeatedly(Return(0));
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
// Switch back.
DefaultSettings(&settings_, kDefaultTemporalLayerProfile);
// Start at the lowest bitrate for enabling base stream.
settings_.startBitrate = kMinBitrates[0];
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
encoder_->SetRates(settings_.startBitrate, 30);
ExpectStreams(kKeyFrame, 1);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, &frame_types));
}
void TestSwitchingToOneStream() {
SwitchingToOneStream(1024, 768);
}
void TestSwitchingToOneOddStream() {
SwitchingToOneStream(1023, 769);
}
void TestRPSIEncoder() {
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(0, temporal_layer);
EXPECT_TRUE(layer_sync);
int key_frame_picture_id = picture_id;
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(2, temporal_layer);
EXPECT_TRUE(layer_sync);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(1, temporal_layer);
EXPECT_TRUE(layer_sync);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(2, temporal_layer);
EXPECT_FALSE(layer_sync);
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecVP8;
codec_specific.codecSpecific.VP8.hasReceivedRPSI = true;
// Must match last key frame to trigger.
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id;
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(0, temporal_layer);
EXPECT_TRUE(layer_sync);
// Must match last key frame to trigger, test bad id.
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id + 17;
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(2, temporal_layer);
// The previous frame was a base layer sync (since it was a frame that
// only predicts from key frame and hence resets the temporal pattern),
// so this frame (the next one) must have |layer_sync| set to true.
EXPECT_TRUE(layer_sync);
}
void TestRPSIEncodeDecode() {
Vp8TestEncodedImageCallback encoder_callback;
Vp8TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(&input_frame_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
encoder_callback.GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, 0);
EXPECT_EQ(0, temporal_layer);
EXPECT_TRUE(layer_sync);
int key_frame_picture_id = picture_id;
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(&input_frame_, plane_offset);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(&input_frame_, plane_offset);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(&input_frame_, plane_offset);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecVP8;
codec_specific.codecSpecific.VP8.hasReceivedRPSI = true;
// Must match last key frame to trigger.
codec_specific.codecSpecific.VP8.pictureIdRPSI = key_frame_picture_id;
// Change color back to original.
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(&input_frame_, plane_offset);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, &codec_specific, NULL));
EncodedImage encoded_frame;
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL);
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void TestSaptioTemporalLayers333PatternEncoder() {
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = { -1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #1.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #2.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #3.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #4.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #5.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void TestSpatioTemporalLayers321PatternEncoder() {
int temporal_layer_profile[3] = {3, 2, 1};
SetUpCodec(temporal_layer_profile);
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = { -1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #1.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #2.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #3.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #4.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
// Next frame: #5.
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(&encoder_callback,
expected_temporal_idx,
expected_layer_sync,
3);
}
void TestStrideEncodeDecode() {
Vp8TestEncodedImageCallback encoder_callback;
Vp8TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
encoder_->SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Setting two (possibly) problematic use cases for stride:
// 1. stride > width 2. stride_y != stride_uv/2
int stride_y = kDefaultWidth + 20;
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
input_frame_.CreateEmptyFrame(kDefaultWidth, kDefaultHeight,
stride_y, stride_uv, stride_uv);
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(&input_frame_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(&input_frame_, plane_offset);
input_frame_.set_timestamp(input_frame_.timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(input_frame_, NULL, NULL));
EncodedImage encoded_frame;
// Only encoding one frame - so will be a key frame.
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL));
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
void TestSkipEncodingUnusedStreams() {
SkipEncodingUnusedStreamsTest test;
std::vector<unsigned int> configured_bitrate =
test.RunTest(encoder_.get(),
&settings_,
1); // Target bit rate 1, to force all streams but the
// base one to be exceeding bandwidth constraints.
EXPECT_EQ(static_cast<size_t>(kNumberOfSimulcastStreams),
configured_bitrate.size());
unsigned int min_bitrate =
std::max(settings_.simulcastStream[0].minBitrate, settings_.minBitrate);
int stream = 0;
for (std::vector<unsigned int>::const_iterator it =
configured_bitrate.begin();
it != configured_bitrate.end();
++it) {
if (stream == 0) {
EXPECT_EQ(min_bitrate, *it);
} else {
EXPECT_EQ(0u, *it);
}
++stream;
}
}
scoped_ptr<VP8Encoder> encoder_;
MockEncodedImageCallback encoder_callback_;
scoped_ptr<VP8Decoder> decoder_;
MockDecodedImageCallback decoder_callback_;
VideoCodec settings_;
I420VideoFrame input_frame_;
};
} // namespace testing
} // namespace webrtc
#endif // WEBRTC_MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_UNITTEST_H_
|