1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/main/source/media_opt_util.h"
#include <algorithm>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
#include "webrtc/modules/video_coding/main/source/er_tables_xor.h"
#include "webrtc/modules/video_coding/main/source/fec_tables_xor.h"
#include "webrtc/modules/video_coding/main/source/nack_fec_tables.h"
namespace webrtc {
namespace media_optimization {
VCMProtectionMethod::VCMProtectionMethod():
_effectivePacketLoss(0),
_protectionFactorK(0),
_protectionFactorD(0),
_residualPacketLossFec(0.0f),
_scaleProtKey(2.0f),
_maxPayloadSize(1460),
_qmRobustness(new VCMQmRobustness()),
_useUepProtectionK(false),
_useUepProtectionD(true),
_corrFecCost(1.0),
_type(kNone),
_efficiency(0)
{
//
}
VCMProtectionMethod::~VCMProtectionMethod()
{
delete _qmRobustness;
}
void
VCMProtectionMethod::UpdateContentMetrics(const
VideoContentMetrics* contentMetrics)
{
_qmRobustness->UpdateContent(contentMetrics);
}
VCMNackFecMethod::VCMNackFecMethod(int lowRttNackThresholdMs,
int highRttNackThresholdMs)
: VCMFecMethod(),
_lowRttNackMs(lowRttNackThresholdMs),
_highRttNackMs(highRttNackThresholdMs),
_maxFramesFec(1) {
assert(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1);
assert(highRttNackThresholdMs == -1 ||
lowRttNackThresholdMs <= highRttNackThresholdMs);
assert(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1);
_type = kNackFec;
}
VCMNackFecMethod::~VCMNackFecMethod()
{
//
}
bool
VCMNackFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
{
// Hybrid Nack FEC has three operational modes:
// 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate
// (_protectionFactorD) to zero. -1 means no FEC.
// 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors.
// -1 means always allow NACK.
// 3. Medium RTT values - Hybrid mode: We will only nack the
// residual following the decoding of the FEC (refer to JB logic). FEC
// delta protection factor will be adjusted based on the RTT.
// Otherwise: we count on FEC; if the RTT is below a threshold, then we
// nack the residual, based on a decision made in the JB.
// Compute the protection factors
VCMFecMethod::ProtectionFactor(parameters);
if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs)
{
_protectionFactorD = 0;
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
}
// When in Hybrid mode (RTT range), adjust FEC rates based on the
// RTT (NACK effectiveness) - adjustment factor is in the range [0,1].
else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs)
{
// TODO(mikhal): Disabling adjustment temporarily.
// uint16_t rttIndex = (uint16_t) parameters->rtt;
float adjustRtt = 1.0f;// (float)VCMNackFecTable[rttIndex] / 100.0f;
// Adjust FEC with NACK on (for delta frame only)
// table depends on RTT relative to rttMax (NACK Threshold)
_protectionFactorD = static_cast<uint8_t>
(adjustRtt *
static_cast<float>(_protectionFactorD));
// update FEC rates after applying adjustment
VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD);
}
return true;
}
int VCMNackFecMethod::ComputeMaxFramesFec(
const VCMProtectionParameters* parameters) {
if (parameters->numLayers > 2) {
// For more than 2 temporal layers we will only have FEC on the base layer,
// and the base layers will be pretty far apart. Therefore we force one
// frame FEC.
return 1;
}
// We set the max number of frames to base the FEC on so that on average
// we will have complete frames in one RTT. Note that this is an upper
// bound, and that the actual number of frames used for FEC is decided by the
// RTP module based on the actual number of packets and the protection factor.
float base_layer_framerate = parameters->frameRate /
static_cast<float>(1 << (parameters->numLayers - 1));
int max_frames_fec = std::max(static_cast<int>(
2.0f * base_layer_framerate * parameters->rtt /
1000.0f + 0.5f), 1);
// |kUpperLimitFramesFec| is the upper limit on how many frames we
// allow any FEC to be based on.
if (max_frames_fec > kUpperLimitFramesFec) {
max_frames_fec = kUpperLimitFramesFec;
}
return max_frames_fec;
}
int VCMNackFecMethod::MaxFramesFec() const {
return _maxFramesFec;
}
bool VCMNackFecMethod::BitRateTooLowForFec(
const VCMProtectionParameters* parameters) {
// Bitrate below which we turn off FEC, regardless of reported packet loss.
// The condition should depend on resolution and content. For now, use
// threshold on bytes per frame, with some effect for the frame size.
// The condition for turning off FEC is also based on other factors,
// such as |_numLayers|, |_maxFramesFec|, and |_rtt|.
int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8;
int max_bytes_per_frame = kMaxBytesPerFrameForFec;
int num_pixels = parameters->codecWidth * parameters->codecHeight;
if (num_pixels <= 352 * 288) {
max_bytes_per_frame = kMaxBytesPerFrameForFecLow;
} else if (num_pixels > 640 * 480) {
max_bytes_per_frame = kMaxBytesPerFrameForFecHigh;
}
// TODO (marpan): add condition based on maximum frames used for FEC,
// and expand condition based on frame size.
if (estimate_bytes_per_frame < max_bytes_per_frame &&
parameters->numLayers < 3 &&
parameters->rtt < kMaxRttTurnOffFec) {
return true;
}
return false;
}
bool
VCMNackFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
{
// Set the effective packet loss for encoder (based on FEC code).
// Compute the effective packet loss and residual packet loss due to FEC.
VCMFecMethod::EffectivePacketLoss(parameters);
return true;
}
bool
VCMNackFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
{
ProtectionFactor(parameters);
EffectivePacketLoss(parameters);
_maxFramesFec = ComputeMaxFramesFec(parameters);
if (BitRateTooLowForFec(parameters)) {
_protectionFactorK = 0;
_protectionFactorD = 0;
}
// Efficiency computation is based on FEC and NACK
// Add FEC cost: ignore I frames for now
float fecRate = static_cast<float> (_protectionFactorD) / 255.0f;
_efficiency = parameters->bitRate * fecRate * _corrFecCost;
// Add NACK cost, when applicable
if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs)
{
// nackCost = (bitRate - nackCost) * (lossPr)
_efficiency += parameters->bitRate * _residualPacketLossFec /
(1.0f + _residualPacketLossFec);
}
// Protection/fec rates obtained above are defined relative to total number
// of packets (total rate: source + fec) FEC in RTP module assumes
// protection factor is defined relative to source number of packets so we
// should convert the factor to reduce mismatch between mediaOpt's rate and
// the actual one
_protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK);
_protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD);
return true;
}
VCMNackMethod::VCMNackMethod():
VCMProtectionMethod()
{
_type = kNack;
}
VCMNackMethod::~VCMNackMethod()
{
//
}
bool
VCMNackMethod::EffectivePacketLoss(const VCMProtectionParameters* parameter)
{
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool
VCMNackMethod::UpdateParameters(const VCMProtectionParameters* parameters)
{
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// nackCost = (bitRate - nackCost) * (lossPr)
_efficiency = parameters->bitRate * parameters->lossPr /
(1.0f + parameters->lossPr);
return true;
}
VCMFecMethod::VCMFecMethod():
VCMProtectionMethod()
{
_type = kFec;
}
VCMFecMethod::~VCMFecMethod()
{
//
}
uint8_t
VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta,
uint8_t packetFrameKey) const
{
uint8_t boostRateKey = 2;
// Default: ratio scales the FEC protection up for I frames
uint8_t ratio = 1;
if (packetFrameDelta > 0)
{
ratio = (int8_t) (packetFrameKey / packetFrameDelta);
}
ratio = VCM_MAX(boostRateKey, ratio);
return ratio;
}
uint8_t
VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const
{
return static_cast<uint8_t> (VCM_MIN(255,(0.5 + 255.0 * codeRateRTP /
(float)(255 - codeRateRTP))));
}
// Update FEC with protectionFactorD
void
VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD)
{
_protectionFactorD = protectionFactorD;
}
// Update FEC with protectionFactorK
void
VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK)
{
_protectionFactorK = protectionFactorK;
}
// AvgRecoveryFEC: computes the residual packet loss (RPL) function.
// This is the average recovery from the FEC, assuming random packet loss model.
// Computed off-line for a range of FEC code parameters and loss rates.
float
VCMFecMethod::AvgRecoveryFEC(const VCMProtectionParameters* parameters) const
{
// Total (avg) bits available per frame: total rate over actual/sent frame
// rate units are kbits/frame
const uint16_t bitRatePerFrame = static_cast<uint16_t>
(parameters->bitRate / (parameters->frameRate));
// Total (average) number of packets per frame (source and fec):
const uint8_t avgTotPackets = 1 + static_cast<uint8_t>
(static_cast<float> (bitRatePerFrame * 1000.0) /
static_cast<float> (8.0 * _maxPayloadSize) + 0.5);
const float protectionFactor = static_cast<float>(_protectionFactorD) /
255.0;
// Round down for estimated #FEC packets/frame, to keep
// |fecPacketsPerFrame| <= |sourcePacketsPerFrame|.
uint8_t fecPacketsPerFrame = static_cast<uint8_t>
(protectionFactor * avgTotPackets);
uint8_t sourcePacketsPerFrame = avgTotPackets - fecPacketsPerFrame;
if ( (fecPacketsPerFrame == 0) || (sourcePacketsPerFrame == 0) )
{
// No protection, or rate too low: so average recovery from FEC == 0.
return 0.0;
}
// Table defined up to kMaxNumPackets
if (sourcePacketsPerFrame > kMaxNumPackets)
{
sourcePacketsPerFrame = kMaxNumPackets;
}
// Table defined up to kMaxNumPackets
if (fecPacketsPerFrame > kMaxNumPackets)
{
fecPacketsPerFrame = kMaxNumPackets;
}
// Code index for tables: up to (kMaxNumPackets * kMaxNumPackets)
uint16_t codeIndexTable[kMaxNumPackets * kMaxNumPackets];
uint16_t k = 0;
for (uint8_t i = 1; i <= kMaxNumPackets; i++)
{
for (uint8_t j = 1; j <= i; j++)
{
codeIndexTable[(j - 1) * kMaxNumPackets + i - 1] = k;
k += 1;
}
}
uint8_t lossRate = static_cast<uint8_t> (255.0 *
parameters->lossPr + 0.5f);
// Constrain lossRate to 50%: tables defined up to 50%
if (lossRate >= kPacketLossMax)
{
lossRate = kPacketLossMax - 1;
}
const uint16_t codeIndex = (fecPacketsPerFrame - 1) * kMaxNumPackets +
(sourcePacketsPerFrame - 1);
const uint16_t indexTable = codeIndexTable[codeIndex] * kPacketLossMax +
lossRate;
// Check on table index
assert(indexTable < kSizeAvgFECRecoveryXOR);
float avgFecRecov = static_cast<float>(kAvgFECRecoveryXOR[indexTable]);
return avgFecRecov;
}
bool
VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters)
{
// FEC PROTECTION SETTINGS: varies with packet loss and bitrate
// No protection if (filtered) packetLoss is 0
uint8_t packetLoss = (uint8_t) (255 * parameters->lossPr);
if (packetLoss == 0)
{
_protectionFactorK = 0;
_protectionFactorD = 0;
return true;
}
// Parameters for FEC setting:
// first partition size, thresholds, table pars, spatial resoln fac.
// First partition protection: ~ 20%
uint8_t firstPartitionProt = (uint8_t) (255 * 0.20);
// Minimum protection level needed to generate one FEC packet for one
// source packet/frame (in RTP sender)
uint8_t minProtLevelFec = 85;
// Threshold on packetLoss and bitRrate/frameRate (=average #packets),
// above which we allocate protection to cover at least first partition.
uint8_t lossThr = 0;
uint8_t packetNumThr = 1;
// Parameters for range of rate index of table.
const uint8_t ratePar1 = 5;
const uint8_t ratePar2 = 49;
// Spatial resolution size, relative to a reference size.
float spatialSizeToRef = static_cast<float>
(parameters->codecWidth * parameters->codecHeight) /
(static_cast<float>(704 * 576));
// resolnFac: This parameter will generally increase/decrease the FEC rate
// (for fixed bitRate and packetLoss) based on system size.
// Use a smaller exponent (< 1) to control/soften system size effect.
const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f);
const int bitRatePerFrame = BitsPerFrame(parameters);
// Average number of packets per frame (source and fec):
const uint8_t avgTotPackets = 1 + (uint8_t)
((float) bitRatePerFrame * 1000.0
/ (float) (8.0 * _maxPayloadSize) + 0.5);
// FEC rate parameters: for P and I frame
uint8_t codeRateDelta = 0;
uint8_t codeRateKey = 0;
// Get index for table: the FEC protection depends on an effective rate.
// The range on the rate index corresponds to rates (bps)
// from ~200k to ~8000k, for 30fps
const uint16_t effRateFecTable = static_cast<uint16_t>
(resolnFac * bitRatePerFrame);
uint8_t rateIndexTable =
(uint8_t) VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) /
ratePar1, ratePar2), 0);
// Restrict packet loss range to 50:
// current tables defined only up to 50%
if (packetLoss >= kPacketLossMax)
{
packetLoss = kPacketLossMax - 1;
}
uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss;
// Check on table index
assert(indexTable < kSizeCodeRateXORTable);
// Protection factor for P frame
codeRateDelta = kCodeRateXORTable[indexTable];
if (packetLoss > lossThr && avgTotPackets > packetNumThr)
{
// Set a minimum based on first partition size.
if (codeRateDelta < firstPartitionProt)
{
codeRateDelta = firstPartitionProt;
}
}
// Check limit on amount of protection for P frame; 50% is max.
if (codeRateDelta >= kPacketLossMax)
{
codeRateDelta = kPacketLossMax - 1;
}
float adjustFec = 1.0f;
// Avoid additional adjustments when layers are active.
// TODO(mikhal/marco): Update adjusmtent based on layer info.
if (parameters->numLayers == 1)
{
adjustFec = _qmRobustness->AdjustFecFactor(codeRateDelta,
parameters->bitRate,
parameters->frameRate,
parameters->rtt,
packetLoss);
}
codeRateDelta = static_cast<uint8_t>(codeRateDelta * adjustFec);
// For Key frame:
// Effectively at a higher rate, so we scale/boost the rate
// The boost factor may depend on several factors: ratio of packet
// number of I to P frames, how much protection placed on P frames, etc.
const uint8_t packetFrameDelta = (uint8_t)
(0.5 + parameters->packetsPerFrame);
const uint8_t packetFrameKey = (uint8_t)
(0.5 + parameters->packetsPerFrameKey);
const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta,
packetFrameKey);
rateIndexTable = (uint8_t) VCM_MAX(VCM_MIN(
1 + (boostKey * effRateFecTable - ratePar1) /
ratePar1,ratePar2),0);
uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss;
indexTableKey = VCM_MIN(indexTableKey, kSizeCodeRateXORTable);
// Check on table index
assert(indexTableKey < kSizeCodeRateXORTable);
// Protection factor for I frame
codeRateKey = kCodeRateXORTable[indexTableKey];
// Boosting for Key frame.
int boostKeyProt = _scaleProtKey * codeRateDelta;
if (boostKeyProt >= kPacketLossMax)
{
boostKeyProt = kPacketLossMax - 1;
}
// Make sure I frame protection is at least larger than P frame protection,
// and at least as high as filtered packet loss.
codeRateKey = static_cast<uint8_t> (VCM_MAX(packetLoss,
VCM_MAX(boostKeyProt, codeRateKey)));
// Check limit on amount of protection for I frame: 50% is max.
if (codeRateKey >= kPacketLossMax)
{
codeRateKey = kPacketLossMax - 1;
}
_protectionFactorK = codeRateKey;
_protectionFactorD = codeRateDelta;
// Generally there is a rate mis-match between the FEC cost estimated
// in mediaOpt and the actual FEC cost sent out in RTP module.
// This is more significant at low rates (small # of source packets), where
// the granularity of the FEC decreases. In this case, non-zero protection
// in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC
// is based on rounding off protectionFactor on actual source packet number).
// The correction factor (_corrFecCost) attempts to corrects this, at least
// for cases of low rates (small #packets) and low protection levels.
float numPacketsFl = 1.0f + ((float) bitRatePerFrame * 1000.0
/ (float) (8.0 * _maxPayloadSize) + 0.5);
const float estNumFecGen = 0.5f + static_cast<float> (_protectionFactorD *
numPacketsFl / 255.0f);
// We reduce cost factor (which will reduce overhead for FEC and
// hybrid method) and not the protectionFactor.
_corrFecCost = 1.0f;
if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec)
{
_corrFecCost = 0.5f;
}
if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec)
{
_corrFecCost = 0.0f;
}
// TODO (marpan): Set the UEP protection on/off for Key and Delta frames
_useUepProtectionK = _qmRobustness->SetUepProtection(codeRateKey,
parameters->bitRate,
packetLoss,
0);
_useUepProtectionD = _qmRobustness->SetUepProtection(codeRateDelta,
parameters->bitRate,
packetLoss,
1);
// DONE WITH FEC PROTECTION SETTINGS
return true;
}
int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) {
// When temporal layers are available FEC will only be applied on the base
// layer.
const float bitRateRatio =
kVp8LayerRateAlloction[parameters->numLayers - 1][0];
float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1);
float bitRate = parameters->bitRate * bitRateRatio;
float frameRate = parameters->frameRate * frameRateRatio;
// TODO(mikhal): Update factor following testing.
float adjustmentFactor = 1;
// Average bits per frame (units of kbits)
return static_cast<int>(adjustmentFactor * bitRate / frameRate);
}
bool
VCMFecMethod::EffectivePacketLoss(const VCMProtectionParameters* parameters)
{
// Effective packet loss to encoder is based on RPL (residual packet loss)
// this is a soft setting based on degree of FEC protection
// RPL = received/input packet loss - average_FEC_recovery
// note: received/input packet loss may be filtered based on FilteredLoss
// The packet loss:
uint8_t packetLoss = (uint8_t) (255 * parameters->lossPr);
float avgFecRecov = AvgRecoveryFEC(parameters);
// Residual Packet Loss:
_residualPacketLossFec = (float) (packetLoss - avgFecRecov) / 255.0f;
// Effective Packet Loss, NA in current version.
_effectivePacketLoss = 0;
return true;
}
bool
VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters)
{
// Compute the protection factor
ProtectionFactor(parameters);
// Compute the effective packet loss
EffectivePacketLoss(parameters);
// Compute the bit cost
// Ignore key frames for now.
float fecRate = static_cast<float> (_protectionFactorD) / 255.0f;
if (fecRate >= 0.0f)
{
// use this formula if the fecRate (protection factor) is defined
// relative to number of source packets
// this is the case for the previous tables:
// _efficiency = parameters->bitRate * ( 1.0 - 1.0 / (1.0 + fecRate));
// in the new tables, the fecRate is defined relative to total number of
// packets (total rate), so overhead cost is:
_efficiency = parameters->bitRate * fecRate * _corrFecCost;
}
else
{
_efficiency = 0.0f;
}
// Protection/fec rates obtained above is defined relative to total number
// of packets (total rate: source+fec) FEC in RTP module assumes protection
// factor is defined relative to source number of packets so we should
// convert the factor to reduce mismatch between mediaOpt suggested rate and
// the actual rate
_protectionFactorK = ConvertFECRate(_protectionFactorK);
_protectionFactorD = ConvertFECRate(_protectionFactorD);
return true;
}
VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs):
_selectedMethod(NULL),
_currentParameters(),
_rtt(0),
_lossPr(0.0f),
_bitRate(0.0f),
_frameRate(0.0f),
_keyFrameSize(0.0f),
_fecRateKey(0),
_fecRateDelta(0),
_lastPrUpdateT(0),
_lossPr255(0.9999f),
_lossPrHistory(),
_shortMaxLossPr255(0),
_packetsPerFrame(0.9999f),
_packetsPerFrameKey(0.9999f),
_residualPacketLossFec(0),
_codecWidth(0),
_codecHeight(0),
_numLayers(1)
{
Reset(nowMs);
}
VCMLossProtectionLogic::~VCMLossProtectionLogic()
{
Release();
}
bool
VCMLossProtectionLogic::SetMethod(enum VCMProtectionMethodEnum newMethodType)
{
if (_selectedMethod != NULL)
{
if (_selectedMethod->Type() == newMethodType)
{
// Nothing to update
return false;
}
// New method - delete existing one
delete _selectedMethod;
}
VCMProtectionMethod *newMethod = NULL;
switch (newMethodType)
{
case kNack:
{
newMethod = new VCMNackMethod();
break;
}
case kFec:
{
newMethod = new VCMFecMethod();
break;
}
case kNackFec:
{
// Default to always having NACK enabled for the hybrid mode.
newMethod = new VCMNackFecMethod(kLowRttNackMs, -1);
break;
}
default:
{
return false;
break;
}
}
_selectedMethod = newMethod;
return true;
}
bool
VCMLossProtectionLogic::RemoveMethod(enum VCMProtectionMethodEnum method)
{
if (_selectedMethod == NULL)
{
return false;
}
else if (_selectedMethod->Type() == method)
{
delete _selectedMethod;
_selectedMethod = NULL;
}
return true;
}
float
VCMLossProtectionLogic::RequiredBitRate() const
{
float RequiredBitRate = 0.0f;
if (_selectedMethod != NULL)
{
RequiredBitRate = _selectedMethod->RequiredBitRate();
}
return RequiredBitRate;
}
void
VCMLossProtectionLogic::UpdateRtt(uint32_t rtt)
{
_rtt = rtt;
}
void
VCMLossProtectionLogic::UpdateResidualPacketLoss(float residualPacketLoss)
{
_residualPacketLossFec = residualPacketLoss;
}
void
VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255,
int64_t now)
{
if (_lossPrHistory[0].timeMs >= 0 &&
now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs)
{
if (lossPr255 > _shortMaxLossPr255)
{
_shortMaxLossPr255 = lossPr255;
}
}
else
{
// Only add a new value to the history once a second
if (_lossPrHistory[0].timeMs == -1)
{
// First, no shift
_shortMaxLossPr255 = lossPr255;
}
else
{
// Shift
for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--)
{
_lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255;
_lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs;
}
}
if (_shortMaxLossPr255 == 0)
{
_shortMaxLossPr255 = lossPr255;
}
_lossPrHistory[0].lossPr255 = _shortMaxLossPr255;
_lossPrHistory[0].timeMs = now;
_shortMaxLossPr255 = 0;
}
}
uint8_t
VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const
{
uint8_t maxFound = _shortMaxLossPr255;
if (_lossPrHistory[0].timeMs == -1)
{
return maxFound;
}
for (int32_t i = 0; i < kLossPrHistorySize; i++)
{
if (_lossPrHistory[i].timeMs == -1)
{
break;
}
if (nowMs - _lossPrHistory[i].timeMs >
kLossPrHistorySize * kLossPrShortFilterWinMs)
{
// This sample (and all samples after this) is too old
break;
}
if (_lossPrHistory[i].lossPr255 > maxFound)
{
// This sample is the largest one this far into the history
maxFound = _lossPrHistory[i].lossPr255;
}
}
return maxFound;
}
uint8_t VCMLossProtectionLogic::FilteredLoss(
int64_t nowMs,
FilterPacketLossMode filter_mode,
uint8_t lossPr255) {
// Update the max window filter.
UpdateMaxLossHistory(lossPr255, nowMs);
// Update the recursive average filter.
_lossPr255.Apply(static_cast<float> (nowMs - _lastPrUpdateT),
static_cast<float> (lossPr255));
_lastPrUpdateT = nowMs;
// Filtered loss: default is received loss (no filtering).
uint8_t filtered_loss = lossPr255;
switch (filter_mode) {
case kNoFilter:
break;
case kAvgFilter:
filtered_loss = static_cast<uint8_t>(_lossPr255.filtered() + 0.5);
break;
case kMaxFilter:
filtered_loss = MaxFilteredLossPr(nowMs);
break;
}
return filtered_loss;
}
void
VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc)
{
_lossPr = (float) packetLossEnc / (float) 255.0;
}
void
VCMLossProtectionLogic::UpdateBitRate(float bitRate)
{
_bitRate = bitRate;
}
void
VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets, int64_t nowMs)
{
_packetsPerFrame.Apply(static_cast<float>(nowMs - _lastPacketPerFrameUpdateT),
nPackets);
_lastPacketPerFrameUpdateT = nowMs;
}
void
VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets, int64_t nowMs)
{
_packetsPerFrameKey.Apply(static_cast<float>(nowMs -
_lastPacketPerFrameUpdateTKey), nPackets);
_lastPacketPerFrameUpdateTKey = nowMs;
}
void
VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize)
{
_keyFrameSize = keyFrameSize;
}
void
VCMLossProtectionLogic::UpdateFrameSize(uint16_t width,
uint16_t height)
{
_codecWidth = width;
_codecHeight = height;
}
void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) {
_numLayers = (numLayers == 0) ? 1 : numLayers;
}
bool
VCMLossProtectionLogic::UpdateMethod()
{
if (_selectedMethod == NULL)
{
return false;
}
_currentParameters.rtt = _rtt;
_currentParameters.lossPr = _lossPr;
_currentParameters.bitRate = _bitRate;
_currentParameters.frameRate = _frameRate; // rename actual frame rate?
_currentParameters.keyFrameSize = _keyFrameSize;
_currentParameters.fecRateDelta = _fecRateDelta;
_currentParameters.fecRateKey = _fecRateKey;
_currentParameters.packetsPerFrame = _packetsPerFrame.filtered();
_currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered();
_currentParameters.residualPacketLossFec = _residualPacketLossFec;
_currentParameters.codecWidth = _codecWidth;
_currentParameters.codecHeight = _codecHeight;
_currentParameters.numLayers = _numLayers;
return _selectedMethod->UpdateParameters(&_currentParameters);
}
VCMProtectionMethod*
VCMLossProtectionLogic::SelectedMethod() const
{
return _selectedMethod;
}
VCMProtectionMethodEnum
VCMLossProtectionLogic::SelectedType() const
{
return _selectedMethod->Type();
}
void
VCMLossProtectionLogic::Reset(int64_t nowMs)
{
_lastPrUpdateT = nowMs;
_lastPacketPerFrameUpdateT = nowMs;
_lastPacketPerFrameUpdateTKey = nowMs;
_lossPr255.Reset(0.9999f);
_packetsPerFrame.Reset(0.9999f);
_fecRateDelta = _fecRateKey = 0;
for (int32_t i = 0; i < kLossPrHistorySize; i++)
{
_lossPrHistory[i].lossPr255 = 0;
_lossPrHistory[i].timeMs = -1;
}
_shortMaxLossPr255 = 0;
Release();
}
void
VCMLossProtectionLogic::Release()
{
delete _selectedMethod;
_selectedMethod = NULL;
}
} // namespace media_optimization
} // namespace webrtc
|