1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/main/source/qm_select.h"
#include <math.h>
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/qm_select_data.h"
#include "webrtc/system_wrappers/interface/trace.h"
namespace webrtc {
// QM-METHOD class
VCMQmMethod::VCMQmMethod()
: content_metrics_(NULL),
width_(0),
height_(0),
user_frame_rate_(0.0f),
native_width_(0),
native_height_(0),
native_frame_rate_(0.0f),
image_type_(kVGA),
framerate_level_(kFrameRateHigh),
init_(false) {
ResetQM();
}
VCMQmMethod::~VCMQmMethod() {
}
void VCMQmMethod::ResetQM() {
aspect_ratio_ = 1.0f;
motion_.Reset();
spatial_.Reset();
content_class_ = 0;
}
uint8_t VCMQmMethod::ComputeContentClass() {
ComputeMotionNFD();
ComputeSpatial();
return content_class_ = 3 * motion_.level + spatial_.level;
}
void VCMQmMethod::UpdateContent(const VideoContentMetrics* contentMetrics) {
content_metrics_ = contentMetrics;
}
void VCMQmMethod::ComputeMotionNFD() {
if (content_metrics_) {
motion_.value = content_metrics_->motion_magnitude;
}
// Determine motion level.
if (motion_.value < kLowMotionNfd) {
motion_.level = kLow;
} else if (motion_.value > kHighMotionNfd) {
motion_.level = kHigh;
} else {
motion_.level = kDefault;
}
}
void VCMQmMethod::ComputeSpatial() {
float spatial_err = 0.0;
float spatial_err_h = 0.0;
float spatial_err_v = 0.0;
if (content_metrics_) {
spatial_err = content_metrics_->spatial_pred_err;
spatial_err_h = content_metrics_->spatial_pred_err_h;
spatial_err_v = content_metrics_->spatial_pred_err_v;
}
// Spatial measure: take average of 3 prediction errors.
spatial_.value = (spatial_err + spatial_err_h + spatial_err_v) / 3.0f;
// Reduce thresholds for large scenes/higher pixel correlation.
float scale2 = image_type_ > kVGA ? kScaleTexture : 1.0;
if (spatial_.value > scale2 * kHighTexture) {
spatial_.level = kHigh;
} else if (spatial_.value < scale2 * kLowTexture) {
spatial_.level = kLow;
} else {
spatial_.level = kDefault;
}
}
ImageType VCMQmMethod::GetImageType(uint16_t width,
uint16_t height) {
// Get the image type for the encoder frame size.
uint32_t image_size = width * height;
if (image_size == kSizeOfImageType[kQCIF]) {
return kQCIF;
} else if (image_size == kSizeOfImageType[kHCIF]) {
return kHCIF;
} else if (image_size == kSizeOfImageType[kQVGA]) {
return kQVGA;
} else if (image_size == kSizeOfImageType[kCIF]) {
return kCIF;
} else if (image_size == kSizeOfImageType[kHVGA]) {
return kHVGA;
} else if (image_size == kSizeOfImageType[kVGA]) {
return kVGA;
} else if (image_size == kSizeOfImageType[kQFULLHD]) {
return kQFULLHD;
} else if (image_size == kSizeOfImageType[kWHD]) {
return kWHD;
} else if (image_size == kSizeOfImageType[kFULLHD]) {
return kFULLHD;
} else {
// No exact match, find closet one.
return FindClosestImageType(width, height);
}
}
ImageType VCMQmMethod::FindClosestImageType(uint16_t width, uint16_t height) {
float size = static_cast<float>(width * height);
float min = size;
int isel = 0;
for (int i = 0; i < kNumImageTypes; ++i) {
float dist = fabs(size - kSizeOfImageType[i]);
if (dist < min) {
min = dist;
isel = i;
}
}
return static_cast<ImageType>(isel);
}
FrameRateLevelClass VCMQmMethod::FrameRateLevel(float avg_framerate) {
if (avg_framerate <= kLowFrameRate) {
return kFrameRateLow;
} else if (avg_framerate <= kMiddleFrameRate) {
return kFrameRateMiddle1;
} else if (avg_framerate <= kHighFrameRate) {
return kFrameRateMiddle2;
} else {
return kFrameRateHigh;
}
}
// RESOLUTION CLASS
VCMQmResolution::VCMQmResolution()
: qm_(new VCMResolutionScale()) {
Reset();
}
VCMQmResolution::~VCMQmResolution() {
delete qm_;
}
void VCMQmResolution::ResetRates() {
sum_target_rate_ = 0.0f;
sum_incoming_framerate_ = 0.0f;
sum_rate_MM_ = 0.0f;
sum_rate_MM_sgn_ = 0.0f;
sum_packet_loss_ = 0.0f;
buffer_level_ = kInitBufferLevel * target_bitrate_;
frame_cnt_ = 0;
frame_cnt_delta_ = 0;
low_buffer_cnt_ = 0;
update_rate_cnt_ = 0;
}
void VCMQmResolution::ResetDownSamplingState() {
state_dec_factor_spatial_ = 1.0;
state_dec_factor_temporal_ = 1.0;
for (int i = 0; i < kDownActionHistorySize; i++) {
down_action_history_[i].spatial = kNoChangeSpatial;
down_action_history_[i].temporal = kNoChangeTemporal;
}
}
void VCMQmResolution::Reset() {
target_bitrate_ = 0.0f;
incoming_framerate_ = 0.0f;
buffer_level_ = 0.0f;
per_frame_bandwidth_ = 0.0f;
avg_target_rate_ = 0.0f;
avg_incoming_framerate_ = 0.0f;
avg_ratio_buffer_low_ = 0.0f;
avg_rate_mismatch_ = 0.0f;
avg_rate_mismatch_sgn_ = 0.0f;
avg_packet_loss_ = 0.0f;
encoder_state_ = kStableEncoding;
num_layers_ = 1;
ResetRates();
ResetDownSamplingState();
ResetQM();
}
EncoderState VCMQmResolution::GetEncoderState() {
return encoder_state_;
}
// Initialize state after re-initializing the encoder,
// i.e., after SetEncodingData() in mediaOpt.
int VCMQmResolution::Initialize(float bitrate,
float user_framerate,
uint16_t width,
uint16_t height,
int num_layers) {
if (user_framerate == 0.0f || width == 0 || height == 0) {
return VCM_PARAMETER_ERROR;
}
Reset();
target_bitrate_ = bitrate;
incoming_framerate_ = user_framerate;
UpdateCodecParameters(user_framerate, width, height);
native_width_ = width;
native_height_ = height;
native_frame_rate_ = user_framerate;
num_layers_ = num_layers;
// Initial buffer level.
buffer_level_ = kInitBufferLevel * target_bitrate_;
// Per-frame bandwidth.
per_frame_bandwidth_ = target_bitrate_ / user_framerate;
init_ = true;
return VCM_OK;
}
void VCMQmResolution::UpdateCodecParameters(float frame_rate, uint16_t width,
uint16_t height) {
width_ = width;
height_ = height;
// |user_frame_rate| is the target frame rate for VPM frame dropper.
user_frame_rate_ = frame_rate;
image_type_ = GetImageType(width, height);
}
// Update rate data after every encoded frame.
void VCMQmResolution::UpdateEncodedSize(size_t encoded_size) {
frame_cnt_++;
// Convert to Kbps.
float encoded_size_kbits = 8.0f * static_cast<float>(encoded_size) / 1000.0f;
// Update the buffer level:
// Note this is not the actual encoder buffer level.
// |buffer_level_| is reset to an initial value after SelectResolution is
// called, and does not account for frame dropping by encoder or VCM.
buffer_level_ += per_frame_bandwidth_ - encoded_size_kbits;
// Counter for occurrences of low buffer level:
// low/negative values means encoder is likely dropping frames.
if (buffer_level_ <= kPercBufferThr * kInitBufferLevel * target_bitrate_) {
low_buffer_cnt_++;
}
}
// Update various quantities after SetTargetRates in MediaOpt.
void VCMQmResolution::UpdateRates(float target_bitrate,
float encoder_sent_rate,
float incoming_framerate,
uint8_t packet_loss) {
// Sum the target bitrate: this is the encoder rate from previous update
// (~1sec), i.e, before the update for next ~1sec.
sum_target_rate_ += target_bitrate_;
update_rate_cnt_++;
// Sum the received (from RTCP reports) packet loss rates.
sum_packet_loss_ += static_cast<float>(packet_loss / 255.0);
// Sum the sequence rate mismatch:
// Mismatch here is based on the difference between the target rate
// used (in previous ~1sec) and the average actual encoding rate measured
// at previous ~1sec.
float diff = target_bitrate_ - encoder_sent_rate;
if (target_bitrate_ > 0.0)
sum_rate_MM_ += fabs(diff) / target_bitrate_;
int sgnDiff = diff > 0 ? 1 : (diff < 0 ? -1 : 0);
// To check for consistent under(+)/over_shooting(-) of target rate.
sum_rate_MM_sgn_ += sgnDiff;
// Update with the current new target and frame rate:
// these values are ones the encoder will use for the current/next ~1sec.
target_bitrate_ = target_bitrate;
incoming_framerate_ = incoming_framerate;
sum_incoming_framerate_ += incoming_framerate_;
// Update the per_frame_bandwidth:
// this is the per_frame_bw for the current/next ~1sec.
per_frame_bandwidth_ = 0.0f;
if (incoming_framerate_ > 0.0f) {
per_frame_bandwidth_ = target_bitrate_ / incoming_framerate_;
}
}
// Select the resolution factors: frame size and frame rate change (qm scales).
// Selection is for going down in resolution, or for going back up
// (if a previous down-sampling action was taken).
// In the current version the following constraints are imposed:
// 1) We only allow for one action, either down or up, at a given time.
// 2) The possible down-sampling actions are: spatial by 1/2x1/2, 3/4x3/4;
// temporal/frame rate reduction by 1/2 and 2/3.
// 3) The action for going back up is the reverse of last (spatial or temporal)
// down-sampling action. The list of down-sampling actions from the
// Initialize() state are kept in |down_action_history_|.
// 4) The total amount of down-sampling (spatial and/or temporal) from the
// Initialize() state (native resolution) is limited by various factors.
int VCMQmResolution::SelectResolution(VCMResolutionScale** qm) {
if (!init_) {
return VCM_UNINITIALIZED;
}
if (content_metrics_ == NULL) {
Reset();
*qm = qm_;
return VCM_OK;
}
// Check conditions on down-sampling state.
assert(state_dec_factor_spatial_ >= 1.0f);
assert(state_dec_factor_temporal_ >= 1.0f);
assert(state_dec_factor_spatial_ <= kMaxSpatialDown);
assert(state_dec_factor_temporal_ <= kMaxTempDown);
assert(state_dec_factor_temporal_ * state_dec_factor_spatial_ <=
kMaxTotalDown);
// Compute content class for selection.
content_class_ = ComputeContentClass();
// Compute various rate quantities for selection.
ComputeRatesForSelection();
// Get the encoder state.
ComputeEncoderState();
// Default settings: no action.
SetDefaultAction();
*qm = qm_;
// Check for going back up in resolution, if we have had some down-sampling
// relative to native state in Initialize().
if (down_action_history_[0].spatial != kNoChangeSpatial ||
down_action_history_[0].temporal != kNoChangeTemporal) {
if (GoingUpResolution()) {
*qm = qm_;
return VCM_OK;
}
}
// Check for going down in resolution.
if (GoingDownResolution()) {
*qm = qm_;
return VCM_OK;
}
return VCM_OK;
}
void VCMQmResolution::SetDefaultAction() {
qm_->codec_width = width_;
qm_->codec_height = height_;
qm_->frame_rate = user_frame_rate_;
qm_->change_resolution_spatial = false;
qm_->change_resolution_temporal = false;
qm_->spatial_width_fact = 1.0f;
qm_->spatial_height_fact = 1.0f;
qm_->temporal_fact = 1.0f;
action_.spatial = kNoChangeSpatial;
action_.temporal = kNoChangeTemporal;
}
void VCMQmResolution::ComputeRatesForSelection() {
avg_target_rate_ = 0.0f;
avg_incoming_framerate_ = 0.0f;
avg_ratio_buffer_low_ = 0.0f;
avg_rate_mismatch_ = 0.0f;
avg_rate_mismatch_sgn_ = 0.0f;
avg_packet_loss_ = 0.0f;
if (frame_cnt_ > 0) {
avg_ratio_buffer_low_ = static_cast<float>(low_buffer_cnt_) /
static_cast<float>(frame_cnt_);
}
if (update_rate_cnt_ > 0) {
avg_rate_mismatch_ = static_cast<float>(sum_rate_MM_) /
static_cast<float>(update_rate_cnt_);
avg_rate_mismatch_sgn_ = static_cast<float>(sum_rate_MM_sgn_) /
static_cast<float>(update_rate_cnt_);
avg_target_rate_ = static_cast<float>(sum_target_rate_) /
static_cast<float>(update_rate_cnt_);
avg_incoming_framerate_ = static_cast<float>(sum_incoming_framerate_) /
static_cast<float>(update_rate_cnt_);
avg_packet_loss_ = static_cast<float>(sum_packet_loss_) /
static_cast<float>(update_rate_cnt_);
}
// For selection we may want to weight some quantities more heavily
// with the current (i.e., next ~1sec) rate values.
avg_target_rate_ = kWeightRate * avg_target_rate_ +
(1.0 - kWeightRate) * target_bitrate_;
avg_incoming_framerate_ = kWeightRate * avg_incoming_framerate_ +
(1.0 - kWeightRate) * incoming_framerate_;
// Use base layer frame rate for temporal layers: this will favor spatial.
assert(num_layers_ > 0);
framerate_level_ = FrameRateLevel(
avg_incoming_framerate_ / static_cast<float>(1 << (num_layers_ - 1)));
}
void VCMQmResolution::ComputeEncoderState() {
// Default.
encoder_state_ = kStableEncoding;
// Assign stressed state if:
// 1) occurrences of low buffer levels is high, or
// 2) rate mis-match is high, and consistent over-shooting by encoder.
if ((avg_ratio_buffer_low_ > kMaxBufferLow) ||
((avg_rate_mismatch_ > kMaxRateMisMatch) &&
(avg_rate_mismatch_sgn_ < -kRateOverShoot))) {
encoder_state_ = kStressedEncoding;
}
// Assign easy state if:
// 1) rate mis-match is high, and
// 2) consistent under-shooting by encoder.
if ((avg_rate_mismatch_ > kMaxRateMisMatch) &&
(avg_rate_mismatch_sgn_ > kRateUnderShoot)) {
encoder_state_ = kEasyEncoding;
}
}
bool VCMQmResolution::GoingUpResolution() {
// For going up, we check for undoing the previous down-sampling action.
float fac_width = kFactorWidthSpatial[down_action_history_[0].spatial];
float fac_height = kFactorHeightSpatial[down_action_history_[0].spatial];
float fac_temp = kFactorTemporal[down_action_history_[0].temporal];
// For going up spatially, we allow for going up by 3/4x3/4 at each stage.
// So if the last spatial action was 1/2x1/2 it would be undone in 2 stages.
// Modify the fac_width/height for this case.
if (down_action_history_[0].spatial == kOneQuarterSpatialUniform) {
fac_width = kFactorWidthSpatial[kOneQuarterSpatialUniform] /
kFactorWidthSpatial[kOneHalfSpatialUniform];
fac_height = kFactorHeightSpatial[kOneQuarterSpatialUniform] /
kFactorHeightSpatial[kOneHalfSpatialUniform];
}
// Check if we should go up both spatially and temporally.
if (down_action_history_[0].spatial != kNoChangeSpatial &&
down_action_history_[0].temporal != kNoChangeTemporal) {
if (ConditionForGoingUp(fac_width, fac_height, fac_temp,
kTransRateScaleUpSpatialTemp)) {
action_.spatial = down_action_history_[0].spatial;
action_.temporal = down_action_history_[0].temporal;
UpdateDownsamplingState(kUpResolution);
return true;
}
}
// Check if we should go up either spatially or temporally.
bool selected_up_spatial = false;
bool selected_up_temporal = false;
if (down_action_history_[0].spatial != kNoChangeSpatial) {
selected_up_spatial = ConditionForGoingUp(fac_width, fac_height, 1.0f,
kTransRateScaleUpSpatial);
}
if (down_action_history_[0].temporal != kNoChangeTemporal) {
selected_up_temporal = ConditionForGoingUp(1.0f, 1.0f, fac_temp,
kTransRateScaleUpTemp);
}
if (selected_up_spatial && !selected_up_temporal) {
action_.spatial = down_action_history_[0].spatial;
action_.temporal = kNoChangeTemporal;
UpdateDownsamplingState(kUpResolution);
return true;
} else if (!selected_up_spatial && selected_up_temporal) {
action_.spatial = kNoChangeSpatial;
action_.temporal = down_action_history_[0].temporal;
UpdateDownsamplingState(kUpResolution);
return true;
} else if (selected_up_spatial && selected_up_temporal) {
PickSpatialOrTemporal();
UpdateDownsamplingState(kUpResolution);
return true;
}
return false;
}
bool VCMQmResolution::ConditionForGoingUp(float fac_width,
float fac_height,
float fac_temp,
float scale_fac) {
float estimated_transition_rate_up = GetTransitionRate(fac_width, fac_height,
fac_temp, scale_fac);
// Go back up if:
// 1) target rate is above threshold and current encoder state is stable, or
// 2) encoder state is easy (encoder is significantly under-shooting target).
if (((avg_target_rate_ > estimated_transition_rate_up) &&
(encoder_state_ == kStableEncoding)) ||
(encoder_state_ == kEasyEncoding)) {
return true;
} else {
return false;
}
}
bool VCMQmResolution::GoingDownResolution() {
float estimated_transition_rate_down =
GetTransitionRate(1.0f, 1.0f, 1.0f, 1.0f);
float max_rate = kFrameRateFac[framerate_level_] * kMaxRateQm[image_type_];
// Resolution reduction if:
// (1) target rate is below transition rate, or
// (2) encoder is in stressed state and target rate below a max threshold.
if ((avg_target_rate_ < estimated_transition_rate_down ) ||
(encoder_state_ == kStressedEncoding && avg_target_rate_ < max_rate)) {
// Get the down-sampling action: based on content class, and how low
// average target rate is relative to transition rate.
uint8_t spatial_fact =
kSpatialAction[content_class_ +
9 * RateClass(estimated_transition_rate_down)];
uint8_t temp_fact =
kTemporalAction[content_class_ +
9 * RateClass(estimated_transition_rate_down)];
switch (spatial_fact) {
case 4: {
action_.spatial = kOneQuarterSpatialUniform;
break;
}
case 2: {
action_.spatial = kOneHalfSpatialUniform;
break;
}
case 1: {
action_.spatial = kNoChangeSpatial;
break;
}
default: {
assert(false);
}
}
switch (temp_fact) {
case 3: {
action_.temporal = kTwoThirdsTemporal;
break;
}
case 2: {
action_.temporal = kOneHalfTemporal;
break;
}
case 1: {
action_.temporal = kNoChangeTemporal;
break;
}
default: {
assert(false);
}
}
// Only allow for one action (spatial or temporal) at a given time.
assert(action_.temporal == kNoChangeTemporal ||
action_.spatial == kNoChangeSpatial);
// Adjust cases not captured in tables, mainly based on frame rate, and
// also check for odd frame sizes.
AdjustAction();
// Update down-sampling state.
if (action_.spatial != kNoChangeSpatial ||
action_.temporal != kNoChangeTemporal) {
UpdateDownsamplingState(kDownResolution);
return true;
}
}
return false;
}
float VCMQmResolution::GetTransitionRate(float fac_width,
float fac_height,
float fac_temp,
float scale_fac) {
ImageType image_type = GetImageType(
static_cast<uint16_t>(fac_width * width_),
static_cast<uint16_t>(fac_height * height_));
FrameRateLevelClass framerate_level =
FrameRateLevel(fac_temp * avg_incoming_framerate_);
// If we are checking for going up temporally, and this is the last
// temporal action, then use native frame rate.
if (down_action_history_[1].temporal == kNoChangeTemporal &&
fac_temp > 1.0f) {
framerate_level = FrameRateLevel(native_frame_rate_);
}
// The maximum allowed rate below which down-sampling is allowed:
// Nominal values based on image format (frame size and frame rate).
float max_rate = kFrameRateFac[framerate_level] * kMaxRateQm[image_type];
uint8_t image_class = image_type > kVGA ? 1: 0;
uint8_t table_index = image_class * 9 + content_class_;
// Scale factor for down-sampling transition threshold:
// factor based on the content class and the image size.
float scaleTransRate = kScaleTransRateQm[table_index];
// Threshold bitrate for resolution action.
return static_cast<float> (scale_fac * scaleTransRate * max_rate);
}
void VCMQmResolution::UpdateDownsamplingState(UpDownAction up_down) {
if (up_down == kUpResolution) {
qm_->spatial_width_fact = 1.0f / kFactorWidthSpatial[action_.spatial];
qm_->spatial_height_fact = 1.0f / kFactorHeightSpatial[action_.spatial];
// If last spatial action was 1/2x1/2, we undo it in two steps, so the
// spatial scale factor in this first step is modified as (4.0/3.0 / 2.0).
if (action_.spatial == kOneQuarterSpatialUniform) {
qm_->spatial_width_fact =
1.0f * kFactorWidthSpatial[kOneHalfSpatialUniform] /
kFactorWidthSpatial[kOneQuarterSpatialUniform];
qm_->spatial_height_fact =
1.0f * kFactorHeightSpatial[kOneHalfSpatialUniform] /
kFactorHeightSpatial[kOneQuarterSpatialUniform];
}
qm_->temporal_fact = 1.0f / kFactorTemporal[action_.temporal];
RemoveLastDownAction();
} else if (up_down == kDownResolution) {
ConstrainAmountOfDownSampling();
ConvertSpatialFractionalToWhole();
qm_->spatial_width_fact = kFactorWidthSpatial[action_.spatial];
qm_->spatial_height_fact = kFactorHeightSpatial[action_.spatial];
qm_->temporal_fact = kFactorTemporal[action_.temporal];
InsertLatestDownAction();
} else {
// This function should only be called if either the Up or Down action
// has been selected.
assert(false);
}
UpdateCodecResolution();
state_dec_factor_spatial_ = state_dec_factor_spatial_ *
qm_->spatial_width_fact * qm_->spatial_height_fact;
state_dec_factor_temporal_ = state_dec_factor_temporal_ * qm_->temporal_fact;
}
void VCMQmResolution::UpdateCodecResolution() {
if (action_.spatial != kNoChangeSpatial) {
qm_->change_resolution_spatial = true;
qm_->codec_width = static_cast<uint16_t>(width_ /
qm_->spatial_width_fact + 0.5f);
qm_->codec_height = static_cast<uint16_t>(height_ /
qm_->spatial_height_fact + 0.5f);
// Size should not exceed native sizes.
assert(qm_->codec_width <= native_width_);
assert(qm_->codec_height <= native_height_);
// New sizes should be multiple of 2, otherwise spatial should not have
// been selected.
assert(qm_->codec_width % 2 == 0);
assert(qm_->codec_height % 2 == 0);
}
if (action_.temporal != kNoChangeTemporal) {
qm_->change_resolution_temporal = true;
// Update the frame rate based on the average incoming frame rate.
qm_->frame_rate = avg_incoming_framerate_ / qm_->temporal_fact + 0.5f;
if (down_action_history_[0].temporal == 0) {
// When we undo the last temporal-down action, make sure we go back up
// to the native frame rate. Since the incoming frame rate may
// fluctuate over time, |avg_incoming_framerate_| scaled back up may
// be smaller than |native_frame rate_|.
qm_->frame_rate = native_frame_rate_;
}
}
}
uint8_t VCMQmResolution::RateClass(float transition_rate) {
return avg_target_rate_ < (kFacLowRate * transition_rate) ? 0:
(avg_target_rate_ >= transition_rate ? 2 : 1);
}
// TODO(marpan): Would be better to capture these frame rate adjustments by
// extending the table data (qm_select_data.h).
void VCMQmResolution::AdjustAction() {
// If the spatial level is default state (neither low or high), motion level
// is not high, and spatial action was selected, switch to 2/3 frame rate
// reduction if the average incoming frame rate is high.
if (spatial_.level == kDefault && motion_.level != kHigh &&
action_.spatial != kNoChangeSpatial &&
framerate_level_ == kFrameRateHigh) {
action_.spatial = kNoChangeSpatial;
action_.temporal = kTwoThirdsTemporal;
}
// If both motion and spatial level are low, and temporal down action was
// selected, switch to spatial 3/4x3/4 if the frame rate is not above the
// lower middle level (|kFrameRateMiddle1|).
if (motion_.level == kLow && spatial_.level == kLow &&
framerate_level_ <= kFrameRateMiddle1 &&
action_.temporal != kNoChangeTemporal) {
action_.spatial = kOneHalfSpatialUniform;
action_.temporal = kNoChangeTemporal;
}
// If spatial action is selected, and there has been too much spatial
// reduction already (i.e., 1/4), then switch to temporal action if the
// average frame rate is not low.
if (action_.spatial != kNoChangeSpatial &&
down_action_history_[0].spatial == kOneQuarterSpatialUniform &&
framerate_level_ != kFrameRateLow) {
action_.spatial = kNoChangeSpatial;
action_.temporal = kTwoThirdsTemporal;
}
// Never use temporal action if number of temporal layers is above 2.
if (num_layers_ > 2) {
if (action_.temporal != kNoChangeTemporal) {
action_.spatial = kOneHalfSpatialUniform;
}
action_.temporal = kNoChangeTemporal;
}
// If spatial action was selected, we need to make sure the frame sizes
// are multiples of two. Otherwise switch to 2/3 temporal.
if (action_.spatial != kNoChangeSpatial &&
!EvenFrameSize()) {
action_.spatial = kNoChangeSpatial;
// Only one action (spatial or temporal) is allowed at a given time, so need
// to check whether temporal action is currently selected.
action_.temporal = kTwoThirdsTemporal;
}
}
void VCMQmResolution::ConvertSpatialFractionalToWhole() {
// If 3/4 spatial is selected, check if there has been another 3/4,
// and if so, combine them into 1/2. 1/2 scaling is more efficient than 9/16.
// Note we define 3/4x3/4 spatial as kOneHalfSpatialUniform.
if (action_.spatial == kOneHalfSpatialUniform) {
bool found = false;
int isel = kDownActionHistorySize;
for (int i = 0; i < kDownActionHistorySize; ++i) {
if (down_action_history_[i].spatial == kOneHalfSpatialUniform) {
isel = i;
found = true;
break;
}
}
if (found) {
action_.spatial = kOneQuarterSpatialUniform;
state_dec_factor_spatial_ = state_dec_factor_spatial_ /
(kFactorWidthSpatial[kOneHalfSpatialUniform] *
kFactorHeightSpatial[kOneHalfSpatialUniform]);
// Check if switching to 1/2x1/2 (=1/4) spatial is allowed.
ConstrainAmountOfDownSampling();
if (action_.spatial == kNoChangeSpatial) {
// Not allowed. Go back to 3/4x3/4 spatial.
action_.spatial = kOneHalfSpatialUniform;
state_dec_factor_spatial_ = state_dec_factor_spatial_ *
kFactorWidthSpatial[kOneHalfSpatialUniform] *
kFactorHeightSpatial[kOneHalfSpatialUniform];
} else {
// Switching is allowed. Remove 3/4x3/4 from the history, and update
// the frame size.
for (int i = isel; i < kDownActionHistorySize - 1; ++i) {
down_action_history_[i].spatial =
down_action_history_[i + 1].spatial;
}
width_ = width_ * kFactorWidthSpatial[kOneHalfSpatialUniform];
height_ = height_ * kFactorHeightSpatial[kOneHalfSpatialUniform];
}
}
}
}
// Returns false if the new frame sizes, under the current spatial action,
// are not multiples of two.
bool VCMQmResolution::EvenFrameSize() {
if (action_.spatial == kOneHalfSpatialUniform) {
if ((width_ * 3 / 4) % 2 != 0 || (height_ * 3 / 4) % 2 != 0) {
return false;
}
} else if (action_.spatial == kOneQuarterSpatialUniform) {
if ((width_ * 1 / 2) % 2 != 0 || (height_ * 1 / 2) % 2 != 0) {
return false;
}
}
return true;
}
void VCMQmResolution::InsertLatestDownAction() {
if (action_.spatial != kNoChangeSpatial) {
for (int i = kDownActionHistorySize - 1; i > 0; --i) {
down_action_history_[i].spatial = down_action_history_[i - 1].spatial;
}
down_action_history_[0].spatial = action_.spatial;
}
if (action_.temporal != kNoChangeTemporal) {
for (int i = kDownActionHistorySize - 1; i > 0; --i) {
down_action_history_[i].temporal = down_action_history_[i - 1].temporal;
}
down_action_history_[0].temporal = action_.temporal;
}
}
void VCMQmResolution::RemoveLastDownAction() {
if (action_.spatial != kNoChangeSpatial) {
// If the last spatial action was 1/2x1/2 we replace it with 3/4x3/4.
if (action_.spatial == kOneQuarterSpatialUniform) {
down_action_history_[0].spatial = kOneHalfSpatialUniform;
} else {
for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
down_action_history_[i].spatial = down_action_history_[i + 1].spatial;
}
down_action_history_[kDownActionHistorySize - 1].spatial =
kNoChangeSpatial;
}
}
if (action_.temporal != kNoChangeTemporal) {
for (int i = 0; i < kDownActionHistorySize - 1; ++i) {
down_action_history_[i].temporal = down_action_history_[i + 1].temporal;
}
down_action_history_[kDownActionHistorySize - 1].temporal =
kNoChangeTemporal;
}
}
void VCMQmResolution::ConstrainAmountOfDownSampling() {
// Sanity checks on down-sampling selection:
// override the settings for too small image size and/or frame rate.
// Also check the limit on current down-sampling states.
float spatial_width_fact = kFactorWidthSpatial[action_.spatial];
float spatial_height_fact = kFactorHeightSpatial[action_.spatial];
float temporal_fact = kFactorTemporal[action_.temporal];
float new_dec_factor_spatial = state_dec_factor_spatial_ *
spatial_width_fact * spatial_height_fact;
float new_dec_factor_temp = state_dec_factor_temporal_ * temporal_fact;
// No spatial sampling if current frame size is too small, or if the
// amount of spatial down-sampling is above maximum spatial down-action.
if ((width_ * height_) <= kMinImageSize ||
new_dec_factor_spatial > kMaxSpatialDown) {
action_.spatial = kNoChangeSpatial;
new_dec_factor_spatial = state_dec_factor_spatial_;
}
// No frame rate reduction if average frame rate is below some point, or if
// the amount of temporal down-sampling is above maximum temporal down-action.
if (avg_incoming_framerate_ <= kMinFrameRate ||
new_dec_factor_temp > kMaxTempDown) {
action_.temporal = kNoChangeTemporal;
new_dec_factor_temp = state_dec_factor_temporal_;
}
// Check if the total (spatial-temporal) down-action is above maximum allowed,
// if so, disallow the current selected down-action.
if (new_dec_factor_spatial * new_dec_factor_temp > kMaxTotalDown) {
if (action_.spatial != kNoChangeSpatial) {
action_.spatial = kNoChangeSpatial;
} else if (action_.temporal != kNoChangeTemporal) {
action_.temporal = kNoChangeTemporal;
} else {
// We only allow for one action (spatial or temporal) at a given time, so
// either spatial or temporal action is selected when this function is
// called. If the selected action is disallowed from one of the above
// 2 prior conditions (on spatial & temporal max down-action), then this
// condition "total down-action > |kMaxTotalDown|" would not be entered.
assert(false);
}
}
}
void VCMQmResolution::PickSpatialOrTemporal() {
// Pick the one that has had the most down-sampling thus far.
if (state_dec_factor_spatial_ > state_dec_factor_temporal_) {
action_.spatial = down_action_history_[0].spatial;
action_.temporal = kNoChangeTemporal;
} else {
action_.spatial = kNoChangeSpatial;
action_.temporal = down_action_history_[0].temporal;
}
}
// TODO(marpan): Update when we allow for directional spatial down-sampling.
void VCMQmResolution::SelectSpatialDirectionMode(float transition_rate) {
// Default is 4/3x4/3
// For bit rates well below transitional rate, we select 2x2.
if (avg_target_rate_ < transition_rate * kRateRedSpatial2X2) {
qm_->spatial_width_fact = 2.0f;
qm_->spatial_height_fact = 2.0f;
}
// Otherwise check prediction errors and aspect ratio.
float spatial_err = 0.0f;
float spatial_err_h = 0.0f;
float spatial_err_v = 0.0f;
if (content_metrics_) {
spatial_err = content_metrics_->spatial_pred_err;
spatial_err_h = content_metrics_->spatial_pred_err_h;
spatial_err_v = content_metrics_->spatial_pred_err_v;
}
// Favor 1x2 if aspect_ratio is 16:9.
if (aspect_ratio_ >= 16.0f / 9.0f) {
// Check if 1x2 has lowest prediction error.
if (spatial_err_h < spatial_err && spatial_err_h < spatial_err_v) {
qm_->spatial_width_fact = 2.0f;
qm_->spatial_height_fact = 1.0f;
}
}
// Check for 4/3x4/3 selection: favor 2x2 over 1x2 and 2x1.
if (spatial_err < spatial_err_h * (1.0f + kSpatialErr2x2VsHoriz) &&
spatial_err < spatial_err_v * (1.0f + kSpatialErr2X2VsVert)) {
qm_->spatial_width_fact = 4.0f / 3.0f;
qm_->spatial_height_fact = 4.0f / 3.0f;
}
// Check for 2x1 selection.
if (spatial_err_v < spatial_err_h * (1.0f - kSpatialErrVertVsHoriz) &&
spatial_err_v < spatial_err * (1.0f - kSpatialErr2X2VsVert)) {
qm_->spatial_width_fact = 1.0f;
qm_->spatial_height_fact = 2.0f;
}
}
// ROBUSTNESS CLASS
VCMQmRobustness::VCMQmRobustness() {
Reset();
}
VCMQmRobustness::~VCMQmRobustness() {
}
void VCMQmRobustness::Reset() {
prev_total_rate_ = 0.0f;
prev_rtt_time_ = 0;
prev_packet_loss_ = 0;
prev_code_rate_delta_ = 0;
ResetQM();
}
// Adjust the FEC rate based on the content and the network state
// (packet loss rate, total rate/bandwidth, round trip time).
// Note that packetLoss here is the filtered loss value.
float VCMQmRobustness::AdjustFecFactor(uint8_t code_rate_delta,
float total_rate,
float framerate,
uint32_t rtt_time,
uint8_t packet_loss) {
// Default: no adjustment
float adjust_fec = 1.0f;
if (content_metrics_ == NULL) {
return adjust_fec;
}
// Compute class state of the content.
ComputeMotionNFD();
ComputeSpatial();
// TODO(marpan): Set FEC adjustment factor.
// Keep track of previous values of network state:
// adjustment may be also based on pattern of changes in network state.
prev_total_rate_ = total_rate;
prev_rtt_time_ = rtt_time;
prev_packet_loss_ = packet_loss;
prev_code_rate_delta_ = code_rate_delta;
return adjust_fec;
}
// Set the UEP (unequal-protection across packets) on/off for the FEC.
bool VCMQmRobustness::SetUepProtection(uint8_t code_rate_delta,
float total_rate,
uint8_t packet_loss,
bool frame_type) {
// Default.
return false;
}
} // namespace
|