1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/metrics.h"
#include "webrtc/system_wrappers/interface/timestamp_extrapolator.h"
namespace webrtc {
VCMTiming::VCMTiming(Clock* clock,
VCMTiming* master_timing)
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
clock_(clock),
master_(false),
ts_extrapolator_(),
codec_timer_(),
render_delay_ms_(kDefaultRenderDelayMs),
min_playout_delay_ms_(0),
jitter_delay_ms_(0),
current_delay_ms_(0),
last_decode_ms_(0),
prev_frame_timestamp_(0),
num_decoded_frames_(0),
num_delayed_decoded_frames_(0),
first_decoded_frame_ms_(-1),
sum_missed_render_deadline_ms_(0) {
if (master_timing == NULL) {
master_ = true;
ts_extrapolator_ = new TimestampExtrapolator(clock_->TimeInMilliseconds());
} else {
ts_extrapolator_ = master_timing->ts_extrapolator_;
}
}
VCMTiming::~VCMTiming() {
UpdateHistograms();
if (master_) {
delete ts_extrapolator_;
}
delete crit_sect_;
}
void VCMTiming::UpdateHistograms() const {
CriticalSectionScoped cs(crit_sect_);
if (num_decoded_frames_ == 0) {
return;
}
int64_t elapsed_sec =
(clock_->TimeInMilliseconds() - first_decoded_frame_ms_) / 1000;
if (elapsed_sec < metrics::kMinRunTimeInSeconds) {
return;
}
RTC_HISTOGRAM_COUNTS_100("WebRTC.Video.DecodedFramesPerSecond",
static_cast<int>((num_decoded_frames_ / elapsed_sec) + 0.5f));
RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DelayedFramesToRenderer",
num_delayed_decoded_frames_ * 100 / num_decoded_frames_);
if (num_delayed_decoded_frames_ > 0) {
RTC_HISTOGRAM_COUNTS_1000(
"WebRTC.Video.DelayedFramesToRenderer_AvgDelayInMs",
sum_missed_render_deadline_ms_ / num_delayed_decoded_frames_);
}
}
void VCMTiming::Reset() {
CriticalSectionScoped cs(crit_sect_);
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
codec_timer_.Reset();
render_delay_ms_ = kDefaultRenderDelayMs;
min_playout_delay_ms_ = 0;
jitter_delay_ms_ = 0;
current_delay_ms_ = 0;
prev_frame_timestamp_ = 0;
}
void VCMTiming::ResetDecodeTime() {
CriticalSectionScoped lock(crit_sect_);
codec_timer_.Reset();
}
void VCMTiming::set_render_delay(uint32_t render_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
render_delay_ms_ = render_delay_ms;
}
void VCMTiming::set_min_playout_delay(uint32_t min_playout_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
min_playout_delay_ms_ = min_playout_delay_ms;
}
void VCMTiming::SetJitterDelay(uint32_t jitter_delay_ms) {
CriticalSectionScoped cs(crit_sect_);
if (jitter_delay_ms != jitter_delay_ms_) {
jitter_delay_ms_ = jitter_delay_ms;
// When in initial state, set current delay to minimum delay.
if (current_delay_ms_ == 0) {
current_delay_ms_ = jitter_delay_ms_;
}
}
}
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
if (current_delay_ms_ == 0) {
// Not initialized, set current delay to target.
current_delay_ms_ = target_delay_ms;
} else if (target_delay_ms != current_delay_ms_) {
int64_t delay_diff_ms = static_cast<int64_t>(target_delay_ms) -
current_delay_ms_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
// will be experienced as the video is played in slow motion. When lowering
// the delay the video will be played at a faster pace.
int64_t max_change_ms = 0;
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change_ms = kDelayMaxChangeMsPerS * (frame_timestamp +
(static_cast<int64_t>(1) << 32) - prev_frame_timestamp_) / 90000;
} else {
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000;
}
if (max_change_ms <= 0) {
// Any changes less than 1 ms are truncated and
// will be postponed. Negative change will be due
// to reordering and should be ignored.
return;
}
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
current_delay_ms_ = current_delay_ms_ + static_cast<int32_t>(delay_diff_ms);
}
prev_frame_timestamp_ = frame_timestamp;
}
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
int64_t actual_decode_time_ms) {
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms = actual_decode_time_ms -
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
current_delay_ms_ += static_cast<uint32_t>(delayed_ms);
} else {
current_delay_ms_ = target_delay_ms;
}
}
int32_t VCMTiming::StopDecodeTimer(uint32_t time_stamp,
int64_t start_time_ms,
int64_t now_ms,
int64_t render_time_ms) {
CriticalSectionScoped cs(crit_sect_);
int32_t time_diff_ms = codec_timer_.StopTimer(start_time_ms, now_ms);
assert(time_diff_ms >= 0);
last_decode_ms_ = time_diff_ms;
// Update stats.
++num_decoded_frames_;
if (num_decoded_frames_ == 1) {
first_decoded_frame_ms_ = now_ms;
}
int time_until_rendering_ms = render_time_ms - render_delay_ms_ - now_ms;
if (time_until_rendering_ms < 0) {
sum_missed_render_deadline_ms_ += -time_until_rendering_ms;
++num_delayed_decoded_frames_;
}
return 0;
}
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
CriticalSectionScoped cs(crit_sect_);
ts_extrapolator_->Update(now_ms, time_stamp);
}
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
return render_time_ms;
}
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
// Make sure that we have at least the playout delay.
uint32_t actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
return estimated_complete_time_ms + actual_delay;
}
// Must be called from inside a critical section.
int32_t VCMTiming::MaxDecodeTimeMs(FrameType frame_type /*= kVideoFrameDelta*/)
const {
const int32_t decode_time_ms = codec_timer_.RequiredDecodeTimeMs(frame_type);
assert(decode_time_ms >= 0);
return decode_time_ms;
}
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t max_wait_time_ms = render_time_ms - now_ms -
MaxDecodeTimeMs() - render_delay_ms_;
if (max_wait_time_ms < 0) {
return 0;
}
return static_cast<uint32_t>(max_wait_time_ms);
}
bool VCMTiming::EnoughTimeToDecode(uint32_t available_processing_time_ms)
const {
CriticalSectionScoped cs(crit_sect_);
int32_t max_decode_time_ms = MaxDecodeTimeMs();
if (max_decode_time_ms < 0) {
// Haven't decoded any frames yet, try decoding one to get an estimate
// of the decode time.
return true;
} else if (max_decode_time_ms == 0) {
// Decode time is less than 1, set to 1 for now since
// we don't have any better precision. Count ticks later?
max_decode_time_ms = 1;
}
return static_cast<int32_t>(available_processing_time_ms) -
max_decode_time_ms > 0;
}
uint32_t VCMTiming::TargetVideoDelay() const {
CriticalSectionScoped cs(crit_sect_);
return TargetDelayInternal();
}
uint32_t VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
}
void VCMTiming::GetTimings(int* decode_ms,
int* max_decode_ms,
int* current_delay_ms,
int* target_delay_ms,
int* jitter_buffer_ms,
int* min_playout_delay_ms,
int* render_delay_ms) const {
CriticalSectionScoped cs(crit_sect_);
*decode_ms = last_decode_ms_;
*max_decode_ms = MaxDecodeTimeMs();
*current_delay_ms = current_delay_ms_;
*target_delay_ms = TargetDelayInternal();
*jitter_buffer_ms = jitter_delay_ms_;
*min_playout_delay_ms = min_playout_delay_ms_;
*render_delay_ms = render_delay_ms_;
}
} // namespace webrtc
|