1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_serializable_tree.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_serializer.h"
#include "ui/accessibility/tree_generator.h"
namespace ui {
namespace {
// A function to turn a tree into a string, capturing only the node ids
// and their relationship to one another.
//
// The string format is kind of like an S-expression, with each expression
// being either a node id, or a node id followed by a subexpression
// representing its children.
//
// Examples:
//
// (1) is a tree with a single node with id 1.
// (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
// (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
void TreeToStringHelper(const AXNode* node, std::string* out_result) {
*out_result += base::IntToString(node->id());
if (node->child_count() != 0) {
*out_result += " (";
for (int i = 0; i < node->child_count(); ++i) {
if (i != 0)
*out_result += " ";
TreeToStringHelper(node->ChildAtIndex(i), out_result);
}
*out_result += ")";
}
}
std::string TreeToString(const AXTree& tree) {
std::string result;
TreeToStringHelper(tree.GetRoot(), &result);
return "(" + result + ")";
}
} // anonymous namespace
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3].
TEST(AXGeneratedTreeTest, TestTreeGenerator) {
int tree_size = 3;
TreeGenerator generator(tree_size);
const char* EXPECTED_TREES[] = {
"(1 (2 3))",
"(2 (1 3))",
"(3 (1 2))",
"(1 (3 2))",
"(2 (3 1))",
"(3 (2 1))",
"(1 (2 (3)))",
"(2 (1 (3)))",
"(3 (1 (2)))",
"(1 (3 (2)))",
"(2 (3 (1)))",
"(3 (2 (1)))",
};
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(arraysize(EXPECTED_TREES)), n);
for (int i = 0; i < n; i++) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
// Test mutating every possible tree with <n> nodes to every other possible
// tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
// (for speed). For each possible combination of trees, we also vary which
// node we serialize first.
//
// For every possible scenario, we check that the AXTreeUpdate is valid,
// that the destination tree can unserialize it and create a valid tree,
// and that after updating all nodes the resulting tree now matches the
// intended tree.
TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) {
// Do a more exhaustive test in release mode. If you're modifying
// the algorithm you may want to try even larger tree sizes if you
// can afford the time.
#ifdef NDEBUG
int tree_size = 4;
#else
LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4.";
int tree_size = 3;
#endif
TreeGenerator generator(tree_size);
int n = generator.UniqueTreeCount();
for (int i = 0; i < n; i++) {
// Build the first tree, tree0.
AXSerializableTree tree0;
generator.BuildUniqueTree(i, &tree0);
SCOPED_TRACE("tree0 is " + TreeToString(tree0));
for (int j = 0; j < n; j++) {
// Build the second tree, tree1.
AXSerializableTree tree1;
generator.BuildUniqueTree(j, &tree1);
SCOPED_TRACE("tree1 is " + TreeToString(tree0));
// Now iterate over which node to update first, |k|.
for (int k = 0; k < tree_size; k++) {
SCOPED_TRACE("i=" + base::IntToString(i) +
" j=" + base::IntToString(j) +
" k=" + base::IntToString(k));
// Start by serializing tree0 and unserializing it into a new
// empty tree |dst_tree|.
scoped_ptr<AXTreeSource<const AXNode*> > tree0_source(
tree0.CreateTreeSource());
AXTreeSerializer<const AXNode*> serializer(tree0_source.get());
AXTreeUpdate update0;
serializer.SerializeChanges(tree0.GetRoot(), &update0);
AXTree dst_tree;
ASSERT_TRUE(dst_tree.Unserialize(update0));
// At this point, |dst_tree| should now be identical to |tree0|.
EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree));
// Next, pretend that tree0 turned into tree1, and serialize
// a sequence of updates to |dst_tree| to match.
scoped_ptr<AXTreeSource<const AXNode*> > tree1_source(
tree1.CreateTreeSource());
serializer.ChangeTreeSourceForTesting(tree1_source.get());
for (int k_index = 0; k_index < tree_size; ++k_index) {
int id = 1 + (k + k_index) % tree_size;
AXTreeUpdate update;
serializer.SerializeChanges(tree1.GetFromId(id), &update);
ASSERT_TRUE(dst_tree.Unserialize(update));
}
// After the sequence of updates, |dst_tree| should now be
// identical to |tree1|.
EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree));
}
}
}
}
} // namespace ui
|