1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree.h"
#include <set>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/ax_node.h"
namespace ui {
namespace {
std::string TreeToStringHelper(AXNode* node, int indent) {
std::string result = std::string(2 * indent, ' ');
result += node->data().ToString() + "\n";
for (int i = 0; i < node->child_count(); ++i)
result += TreeToStringHelper(node->ChildAtIndex(i), indent + 1);
return result;
}
} // anonymous namespace
// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
// During an update, this keeps track of all nodes that have been
// implicitly referenced as part of this update, but haven't been
// updated yet. It's an error if there are any pending nodes at the
// end of Unserialize.
std::set<AXNode*> pending_nodes;
// Keeps track of new nodes created during this update.
std::set<AXNode*> new_nodes;
};
AXTreeDelegate::AXTreeDelegate() {
}
AXTreeDelegate::~AXTreeDelegate() {
}
AXTree::AXTree()
: delegate_(NULL), root_(NULL) {
AXNodeData root;
root.id = -1;
root.role = AX_ROLE_ROOT_WEB_AREA;
AXTreeUpdate initial_state;
initial_state.nodes.push_back(root);
CHECK(Unserialize(initial_state)) << error();
}
AXTree::AXTree(const AXTreeUpdate& initial_state)
: delegate_(NULL), root_(NULL) {
CHECK(Unserialize(initial_state)) << error();
}
AXTree::~AXTree() {
if (root_)
DestroyNodeAndSubtree(root_);
}
void AXTree::SetDelegate(AXTreeDelegate* delegate) {
delegate_ = delegate;
}
AXNode* AXTree::GetRoot() const {
return root_;
}
AXNode* AXTree::GetFromId(int32 id) const {
base::hash_map<int32, AXNode*>::const_iterator iter = id_map_.find(id);
return iter != id_map_.end() ? (iter->second) : NULL;
}
bool AXTree::Unserialize(const AXTreeUpdate& update) {
AXTreeUpdateState update_state;
int32 old_root_id = root_ ? root_->id() : 0;
if (update.node_id_to_clear != 0) {
AXNode* node = GetFromId(update.node_id_to_clear);
if (!node) {
error_ = base::StringPrintf("Bad node_id_to_clear: %d",
update.node_id_to_clear);
return false;
}
if (node == root_) {
DestroyNodeAndSubtree(root_);
root_ = NULL;
} else {
for (int i = 0; i < node->child_count(); ++i)
DestroyNodeAndSubtree(node->ChildAtIndex(i));
std::vector<AXNode*> children;
node->SwapChildren(children);
update_state.pending_nodes.insert(node);
}
}
for (size_t i = 0; i < update.nodes.size(); ++i) {
if (!UpdateNode(update.nodes[i], &update_state))
return false;
}
if (!update_state.pending_nodes.empty()) {
error_ = "Nodes left pending by the update:";
for (std::set<AXNode*>::iterator iter = update_state.pending_nodes.begin();
iter != update_state.pending_nodes.end(); ++iter) {
error_ += base::StringPrintf(" %d", (*iter)->id());
}
return false;
}
if (delegate_) {
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
if (update_state.new_nodes.find(node) != update_state.new_nodes.end()) {
delegate_->OnNodeCreationFinished(node);
update_state.new_nodes.erase(node);
} else {
delegate_->OnNodeChangeFinished(node);
}
}
if (root_->id() != old_root_id)
delegate_->OnRootChanged(root_);
}
return true;
}
std::string AXTree::ToString() const {
return TreeToStringHelper(root_, 0);
}
AXNode* AXTree::CreateNode(
AXNode* parent, int32 id, int32 index_in_parent) {
AXNode* new_node = new AXNode(parent, id, index_in_parent);
id_map_[new_node->id()] = new_node;
if (delegate_)
delegate_->OnNodeCreated(new_node);
return new_node;
}
bool AXTree::UpdateNode(
const AXNodeData& src, AXTreeUpdateState* update_state) {
// This method updates one node in the tree based on serialized data
// received in an AXTreeUpdate. See AXTreeUpdate for pre and post
// conditions.
// Look up the node by id. If it's not found, then either the root
// of the tree is being swapped, or we're out of sync with the source
// and this is a serious error.
AXNode* node = GetFromId(src.id);
AXNode* new_root = NULL;
if (node) {
update_state->pending_nodes.erase(node);
node->SetData(src);
} else {
if (src.role != AX_ROLE_ROOT_WEB_AREA) {
error_ = base::StringPrintf(
"%d is not in the tree and not the new root", src.id);
return false;
}
new_root = CreateNode(NULL, src.id, 0);
node = new_root;
update_state->new_nodes.insert(node);
node->SetData(src);
}
if (delegate_)
delegate_->OnNodeChanged(node);
// First, delete nodes that used to be children of this node but aren't
// anymore.
if (!DeleteOldChildren(node, src.child_ids)) {
if (new_root)
DestroyNodeAndSubtree(new_root);
return false;
}
// Now build a new children vector, reusing nodes when possible,
// and swap it in.
std::vector<AXNode*> new_children;
bool success = CreateNewChildVector(
node, src.child_ids, &new_children, update_state);
node->SwapChildren(new_children);
// Update the root of the tree if needed.
if (src.role == AX_ROLE_ROOT_WEB_AREA &&
(!root_ || root_->id() != src.id)) {
if (root_)
DestroyNodeAndSubtree(root_);
root_ = node;
}
return success;
}
void AXTree::DestroyNodeAndSubtree(AXNode* node) {
id_map_.erase(node->id());
for (int i = 0; i < node->child_count(); ++i)
DestroyNodeAndSubtree(node->ChildAtIndex(i));
if (delegate_)
delegate_->OnNodeWillBeDeleted(node);
node->Destroy();
}
bool AXTree::DeleteOldChildren(AXNode* node,
const std::vector<int32> new_child_ids) {
// Create a set of child ids in |src| for fast lookup, and return false
// if a duplicate is found;
std::set<int32> new_child_id_set;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
if (new_child_id_set.find(new_child_ids[i]) != new_child_id_set.end()) {
error_ = base::StringPrintf("Node %d has duplicate child id %d",
node->id(), new_child_ids[i]);
return false;
}
new_child_id_set.insert(new_child_ids[i]);
}
// Delete the old children.
const std::vector<AXNode*>& old_children = node->children();
for (size_t i = 0; i < old_children.size(); ++i) {
int old_id = old_children[i]->id();
if (new_child_id_set.find(old_id) == new_child_id_set.end())
DestroyNodeAndSubtree(old_children[i]);
}
return true;
}
bool AXTree::CreateNewChildVector(AXNode* node,
const std::vector<int32> new_child_ids,
std::vector<AXNode*>* new_children,
AXTreeUpdateState* update_state) {
bool success = true;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
int32 child_id = new_child_ids[i];
int32 index_in_parent = static_cast<int32>(i);
AXNode* child = GetFromId(child_id);
if (child) {
if (child->parent() != node) {
// This is a serious error - nodes should never be reparented.
// If this case occurs, continue so this node isn't left in an
// inconsistent state, but return failure at the end.
error_ = base::StringPrintf(
"Node %d reparented from %d to %d",
child->id(),
child->parent() ? child->parent()->id() : 0,
node->id());
success = false;
continue;
}
child->SetIndexInParent(index_in_parent);
} else {
child = CreateNode(node, child_id, index_in_parent);
update_state->pending_nodes.insert(child);
update_state->new_nodes.insert(child);
}
new_children->push_back(child);
}
return success;
}
} // namespace ui
|