1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#define UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
#include <set>
#include "base/containers/hash_tables.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "ui/accessibility/ax_tree_source.h"
#include "ui/accessibility/ax_tree_update.h"
namespace ui {
struct ClientTreeNode;
// AXTreeSerializer is a helper class that serializes incremental
// updates to an AXTreeSource as a AXTreeUpdate struct.
// These structs can be unserialized by a client object such as an
// AXTree. An AXTreeSerializer keeps track of the tree of node ids that its
// client is aware of so that it will never generate an AXTreeUpdate that
// results in an invalid tree.
//
// Every node in the source tree must have an id that's a unique positive
// integer, the same node must not appear twice.
//
// Usage:
//
// You must call SerializeChanges() every time a node in the tree changes,
// and send the generated AXTreeUpdate to the client.
//
// If a node is added, call SerializeChanges on its parent.
// If a node is removed, call SerializeChanges on its parent.
// If a whole new subtree is added, just call SerializeChanges on its root.
// If the root of the tree changes, call SerializeChanges on the new root.
//
// AXTreeSerializer will avoid re-serializing nodes that do not change.
// For example, if node 1 has children 2, 3, 4, 5 and then child 2 is
// removed and a new child 6 is added, the AXTreeSerializer will only
// update nodes 1 and 6 (and any children of node 6 recursively). It will
// assume that nodes 3, 4, and 5 are not modified unless you explicitly
// call SerializeChanges() on them.
//
// As long as the source tree has unique ids for every node and no loops,
// and as long as every update is applied to the client tree, AXTreeSerializer
// will continue to work. If the source tree makes a change but fails to
// call SerializeChanges properly, the trees may get out of sync - but
// because AXTreeSerializer always keeps track of what updates it's sent,
// it will never send an invalid update and the client tree will not break,
// it just may not contain all of the changes.
template<typename AXSourceNode>
class AXTreeSerializer {
public:
explicit AXTreeSerializer(AXTreeSource<AXSourceNode>* tree);
~AXTreeSerializer();
// Throw out the internal state that keeps track of the nodes the client
// knows about. This has the effect that the next update will send the
// entire tree over because it assumes the client knows nothing.
void Reset();
// Serialize all changes to |node| and append them to |out_update|.
void SerializeChanges(AXSourceNode node,
AXTreeUpdate* out_update);
// Delete the client subtree for this node, ensuring that the subtree
// is re-serialized.
void DeleteClientSubtree(AXSourceNode node);
// Only for unit testing. Normally this class relies on getting a call
// to SerializeChanges() every time the source tree changes. For unit
// testing, it's convenient to create a static AXTree for the initial
// state and then call ChangeTreeSourceForTesting and then SerializeChanges
// to simulate the changes you'd get if a tree changed from the initial
// state to the second tree's state.
void ChangeTreeSourceForTesting(AXTreeSource<AXSourceNode>* new_tree);
private:
// Return the least common ancestor of a node in the source tree
// and a node in the client tree, or NULL if there is no such node.
// The least common ancestor is the closest ancestor to |node| (which
// may be |node| itself) that's in both the source tree and client tree,
// and for which both the source and client tree agree on their ancestor
// chain up to the root.
//
// Example 1:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 4 |
//
// LCA(source node 2, client node 2) is node 2.
// LCA(source node 3, client node 4) is node 1.
//
// Example 2:
//
// Client Tree Source tree |
// 1 1 |
// / \ / \ |
// 2 3 2 3 |
// / \ / / |
// 4 7 8 4 |
// / \ / \ |
// 5 6 5 6 |
//
// LCA(source node 8, client node 7) is node 2.
// LCA(source node 5, client node 5) is node 1.
// It's not node 5, because the two trees disagree on the parent of
// node 4, so the LCA is the first ancestor both trees agree on.
AXSourceNode LeastCommonAncestor(AXSourceNode node,
ClientTreeNode* client_node);
// Return the least common ancestor of |node| that's in the client tree.
// This just walks up the ancestors of |node| until it finds a node that's
// also in the client tree, and then calls LeastCommonAncestor on the
// source node and client node.
AXSourceNode LeastCommonAncestor(AXSourceNode node);
// Walk the subtree rooted at |node| and return true if any nodes that
// would be updated are being reparented. If so, update |out_lca| to point
// to the least common ancestor of the previous LCA and the previous
// parent of the node being reparented.
bool AnyDescendantWasReparented(AXSourceNode node,
AXSourceNode* out_lca);
ClientTreeNode* ClientTreeNodeById(int32 id);
// Delete the given client tree node and recursively delete all of its
// descendants.
void DeleteClientSubtree(ClientTreeNode* client_node);
// Helper function, called recursively with each new node to serialize.
void SerializeChangedNodes(AXSourceNode node,
AXTreeUpdate* out_update);
// The tree source.
AXTreeSource<AXSourceNode>* tree_;
// Our representation of the client tree.
ClientTreeNode* client_root_;
// A map from IDs to nodes in the client tree.
base::hash_map<int32, ClientTreeNode*> client_id_map_;
};
// In order to keep track of what nodes the client knows about, we keep a
// representation of the client tree - just IDs and parent/child
// relationships.
struct AX_EXPORT ClientTreeNode {
ClientTreeNode();
virtual ~ClientTreeNode();
int32 id;
ClientTreeNode* parent;
std::vector<ClientTreeNode*> children;
};
template<typename AXSourceNode>
AXTreeSerializer<AXSourceNode>::AXTreeSerializer(
AXTreeSource<AXSourceNode>* tree)
: tree_(tree),
client_root_(NULL) {
}
template<typename AXSourceNode>
AXTreeSerializer<AXSourceNode>::~AXTreeSerializer() {
Reset();
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::Reset() {
if (!client_root_)
return;
DeleteClientSubtree(client_root_);
client_id_map_.erase(client_root_->id);
delete client_root_;
client_root_ = NULL;
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::ChangeTreeSourceForTesting(
AXTreeSource<AXSourceNode>* new_tree) {
tree_ = new_tree;
}
template<typename AXSourceNode>
AXSourceNode AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
AXSourceNode node, ClientTreeNode* client_node) {
if (!tree_->IsValid(node) || client_node == NULL)
return tree_->GetNull();
std::vector<AXSourceNode> ancestors;
while (tree_->IsValid(node)) {
ancestors.push_back(node);
node = tree_->GetParent(node);
}
std::vector<ClientTreeNode*> client_ancestors;
while (client_node) {
client_ancestors.push_back(client_node);
client_node = client_node->parent;
}
// Start at the root. Keep going until the source ancestor chain and
// client ancestor chain disagree. The last node before they disagree
// is the LCA.
AXSourceNode lca = tree_->GetNull();
int source_index = static_cast<int>(ancestors.size() - 1);
int client_index = static_cast<int>(client_ancestors.size() - 1);
while (source_index >= 0 && client_index >= 0) {
if (tree_->GetId(ancestors[source_index]) !=
client_ancestors[client_index]->id) {
return lca;
}
lca = ancestors[source_index];
source_index--;
client_index--;
}
return lca;
}
template<typename AXSourceNode>
AXSourceNode AXTreeSerializer<AXSourceNode>::LeastCommonAncestor(
AXSourceNode node) {
// Walk up the tree until the source node's id also exists in the
// client tree, then call LeastCommonAncestor on those two nodes.
ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
while (tree_->IsValid(node) && !client_node) {
node = tree_->GetParent(node);
if (tree_->IsValid(node))
client_node = ClientTreeNodeById(tree_->GetId(node));
}
return LeastCommonAncestor(node, client_node);
}
template<typename AXSourceNode>
bool AXTreeSerializer<AXSourceNode>::AnyDescendantWasReparented(
AXSourceNode node, AXSourceNode* out_lca) {
bool result = false;
int id = tree_->GetId(node);
std::vector<AXSourceNode> children;
tree_->GetChildren(node, &children);
for (size_t i = 0; i < children.size(); ++i) {
AXSourceNode& child = children[i];
int child_id = tree_->GetId(child);
ClientTreeNode* client_child = ClientTreeNodeById(child_id);
if (client_child) {
if (!client_child->parent) {
// If the client child has no parent, it must have been the
// previous root node, so there is no LCA and we can exit early.
*out_lca = tree_->GetNull();
return true;
} else if (client_child->parent->id != id) {
// If the client child's parent is not this node, update the LCA
// and return true (reparenting was found).
*out_lca = LeastCommonAncestor(*out_lca, client_child);
result = true;
} else {
// This child is already in the client tree, we won't
// recursively serialize it so we don't need to check this
// subtree recursively for reparenting.
continue;
}
}
// This is a new child or reparented child, check it recursively.
if (AnyDescendantWasReparented(child, out_lca))
result = true;
}
return result;
}
template<typename AXSourceNode>
ClientTreeNode* AXTreeSerializer<AXSourceNode>::ClientTreeNodeById(int32 id) {
base::hash_map<int32, ClientTreeNode*>::iterator iter =
client_id_map_.find(id);
if (iter != client_id_map_.end())
return iter->second;
else
return NULL;
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::SerializeChanges(
AXSourceNode node,
AXTreeUpdate* out_update) {
// If the node isn't in the client tree, we need to serialize starting
// with the LCA.
AXSourceNode lca = LeastCommonAncestor(node);
// This loop computes the least common ancestor that includes the old
// and new parents of any nodes that have been reparented, and clears the
// whole client subtree of that LCA if necessary. If we do end up clearing
// any client nodes, keep looping because we have to search for more
// nodes that may have been reparented from this new LCA.
bool need_delete;
do {
need_delete = false;
if (client_root_) {
if (tree_->IsValid(lca)) {
// Check for any reparenting within this subtree - if there is
// any, we need to delete and reserialize the whole subtree
// that contains the old and new parents of the reparented node.
if (AnyDescendantWasReparented(lca, &lca))
need_delete = true;
}
if (!tree_->IsValid(lca)) {
// If there's no LCA, just tell the client to destroy the whole
// tree and then we'll serialize everything from the new root.
out_update->node_id_to_clear = client_root_->id;
Reset();
} else if (need_delete) {
// Otherwise, if we need to reserialize a subtree, first we need
// to delete those nodes in our client tree so that
// SerializeChangedNodes() will be sure to send them again.
out_update->node_id_to_clear = tree_->GetId(lca);
ClientTreeNode* client_lca = ClientTreeNodeById(tree_->GetId(lca));
CHECK(client_lca);
DeleteClientSubtree(client_lca);
}
}
} while (need_delete);
// Serialize from the LCA, or from the root if there isn't one.
if (!tree_->IsValid(lca))
lca = tree_->GetRoot();
SerializeChangedNodes(lca, out_update);
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::DeleteClientSubtree(AXSourceNode node) {
ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node));
if (client_node)
DeleteClientSubtree(client_node);
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::DeleteClientSubtree(
ClientTreeNode* client_node) {
for (size_t i = 0; i < client_node->children.size(); ++i) {
client_id_map_.erase(client_node->children[i]->id);
DeleteClientSubtree(client_node->children[i]);
delete client_node->children[i];
}
client_node->children.clear();
}
template<typename AXSourceNode>
void AXTreeSerializer<AXSourceNode>::SerializeChangedNodes(
AXSourceNode node,
AXTreeUpdate* out_update) {
// This method has three responsibilities:
// 1. Serialize |node| into an AXNodeData, and append it to
// the AXTreeUpdate to be sent to the client.
// 2. Determine if |node| has any new children that the client doesn't
// know about yet, and call SerializeChangedNodes recursively on those.
// 3. Update our internal data structure that keeps track of what nodes
// the client knows about.
// First, find the ClientTreeNode for this id in our data structure where
// we keep track of what accessibility objects the client already knows
// about. If we don't find it, then this must be the new root of the
// accessibility tree.
int id = tree_->GetId(node);
ClientTreeNode* client_node = ClientTreeNodeById(id);
if (!client_node) {
Reset();
client_root_ = new ClientTreeNode();
client_node = client_root_;
client_node->id = id;
client_node->parent = NULL;
client_id_map_[client_node->id] = client_node;
}
// Iterate over the ids of the children of |node|.
// Create a set of the child ids so we can quickly look
// up which children are new and which ones were there before.
base::hash_set<int32> new_child_ids;
std::vector<AXSourceNode> children;
tree_->GetChildren(node, &children);
for (size_t i = 0; i < children.size(); ++i) {
AXSourceNode& child = children[i];
int new_child_id = tree_->GetId(child);
new_child_ids.insert(new_child_id);
// This is a sanity check - there shouldn't be any reparenting
// because we've already handled it above.
ClientTreeNode* client_child = client_id_map_[new_child_id];
CHECK(!client_child || client_child->parent == client_node);
}
// Go through the old children and delete subtrees for child
// ids that are no longer present, and create a map from
// id to ClientTreeNode for the rest. It's important to delete
// first in a separate pass so that nodes that are reparented
// don't end up children of two different parents in the middle
// of an update, which can lead to a double-free.
base::hash_map<int32, ClientTreeNode*> client_child_id_map;
std::vector<ClientTreeNode*> old_children;
old_children.swap(client_node->children);
for (size_t i = 0; i < old_children.size(); ++i) {
ClientTreeNode* old_child = old_children[i];
int old_child_id = old_child->id;
if (new_child_ids.find(old_child_id) == new_child_ids.end()) {
client_id_map_.erase(old_child_id);
DeleteClientSubtree(old_child);
delete old_child;
} else {
client_child_id_map[old_child_id] = old_child;
}
}
// Serialize this node. This fills in all of the fields in
// AXNodeData except child_ids, which we handle below.
out_update->nodes.push_back(AXNodeData());
AXNodeData* serialized_node = &out_update->nodes.back();
tree_->SerializeNode(node, serialized_node);
// TODO(dmazzoni/dtseng): Make the serializer not depend on roles to identify
// the root.
if (serialized_node->id == client_root_->id &&
(serialized_node->role != AX_ROLE_ROOT_WEB_AREA &&
serialized_node->role != AX_ROLE_DESKTOP)) {
serialized_node->role = AX_ROLE_ROOT_WEB_AREA;
}
serialized_node->child_ids.clear();
// Iterate over the children, make note of the ones that are new
// and need to be serialized, and update the ClientTreeNode
// data structure to reflect the new tree.
std::vector<AXSourceNode> children_to_serialize;
client_node->children.reserve(children.size());
for (size_t i = 0; i < children.size(); ++i) {
AXSourceNode& child = children[i];
int child_id = tree_->GetId(child);
// No need to do anything more with children that aren't new;
// the client will reuse its existing object.
if (new_child_ids.find(child_id) == new_child_ids.end())
continue;
new_child_ids.erase(child_id);
serialized_node->child_ids.push_back(child_id);
if (client_child_id_map.find(child_id) != client_child_id_map.end()) {
ClientTreeNode* reused_child = client_child_id_map[child_id];
client_node->children.push_back(reused_child);
} else {
ClientTreeNode* new_child = new ClientTreeNode();
new_child->id = child_id;
new_child->parent = client_node;
client_node->children.push_back(new_child);
client_id_map_[child_id] = new_child;
children_to_serialize.push_back(child);
}
}
// Serialize all of the new children, recursively.
for (size_t i = 0; i < children_to_serialize.size(); ++i)
SerializeChangedNodes(children_to_serialize[i], out_update);
}
} // namespace ui
#endif // UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_
|