File: motion_event_buffer.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (341 lines) | stat: -rw-r--r-- 12,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/events/gesture_detection/motion_event_buffer.h"

#include "base/debug/trace_event.h"
#include "ui/events/gesture_detection/motion_event_generic.h"

namespace ui {
namespace {

// Latency added during resampling. A few milliseconds doesn't hurt much but
// reduces the impact of mispredicted touch positions.
const int kResampleLatencyMs = 5;

// Minimum time difference between consecutive samples before attempting to
// resample.
const int kResampleMinDeltaMs = 2;

// Maximum time to predict forward from the last known state, to avoid
// predicting too far into the future.  This time is further bounded by 50% of
// the last time delta.
const int kResampleMaxPredictionMs = 8;

typedef ScopedVector<MotionEventGeneric> MotionEventVector;

float Lerp(float a, float b, float alpha) {
  return a + alpha * (b - a);
}

bool CanAddSample(const MotionEvent& event0, const MotionEvent& event1) {
  DCHECK_EQ(event0.GetAction(), MotionEvent::ACTION_MOVE);
  if (event1.GetAction() != MotionEvent::ACTION_MOVE)
    return false;

  const size_t pointer_count = event0.GetPointerCount();
  if (pointer_count != event1.GetPointerCount())
    return false;

  for (size_t event0_i = 0; event0_i < pointer_count; ++event0_i) {
    const int id = event0.GetPointerId(event0_i);
    const int event1_i = event1.FindPointerIndexOfId(id);
    if (event1_i == -1)
      return false;
    if (event0.GetToolType(event0_i) != event1.GetToolType(event1_i))
      return false;
  }

  return true;
}

bool ShouldResampleTool(MotionEvent::ToolType tool) {
  return tool == MotionEvent::TOOL_TYPE_UNKNOWN ||
         tool == MotionEvent::TOOL_TYPE_FINGER;
}

size_t CountSamplesNoLaterThan(const MotionEventVector& batch,
                               base::TimeTicks time) {
  size_t count = 0;
  while (count < batch.size() && batch[count]->GetEventTime() <= time)
    ++count;
  return count;
}

MotionEventVector ConsumeSamplesNoLaterThan(MotionEventVector* batch,
                                            base::TimeTicks time) {
  DCHECK(batch);
  size_t count = CountSamplesNoLaterThan(*batch, time);
  DCHECK_GE(batch->size(), count);
  if (count == 0)
    return MotionEventVector();

  if (count == batch->size())
    return batch->Pass();

  // TODO(jdduke): Use a ScopedDeque to work around this mess.
  MotionEventVector unconsumed_batch;
  unconsumed_batch.insert(
      unconsumed_batch.begin(), batch->begin() + count, batch->end());
  batch->weak_erase(batch->begin() + count, batch->end());

  unconsumed_batch.swap(*batch);
  DCHECK_GE(unconsumed_batch.size(), 1U);
  return unconsumed_batch.Pass();
}

// Linearly interpolate the pointer position between two MotionEvent samples.
// Only pointers of finger or unknown type will be resampled.
PointerProperties ResamplePointer(const MotionEvent& event0,
                                  const MotionEvent& event1,
                                  size_t event0_pointer_index,
                                  size_t event1_pointer_index,
                                  float alpha) {
  DCHECK_EQ(event0.GetPointerId(event0_pointer_index),
            event1.GetPointerId(event1_pointer_index));
  // If the tool should not be resampled, use the latest event in the valid
  // horizon (i.e., the event no later than the time interpolated by alpha).
  if (!ShouldResampleTool(event0.GetToolType(event0_pointer_index))) {
    if (alpha > 1)
      return PointerProperties(event1, event1_pointer_index);
    else
      return PointerProperties(event0, event0_pointer_index);
  }

  PointerProperties p(event0, event0_pointer_index);
  p.x = Lerp(p.x, event1.GetX(event1_pointer_index), alpha);
  p.y = Lerp(p.y, event1.GetY(event1_pointer_index), alpha);
  p.raw_x = Lerp(p.raw_x, event1.GetRawX(event1_pointer_index), alpha);
  p.raw_y = Lerp(p.raw_y, event1.GetRawY(event1_pointer_index), alpha);
  return p;
}

// Linearly interpolate the pointers between two event samples using the
// provided |resample_time|.
scoped_ptr<MotionEventGeneric> ResampleMotionEvent(
    const MotionEvent& event0,
    const MotionEvent& event1,
    base::TimeTicks resample_time) {
  DCHECK_EQ(MotionEvent::ACTION_MOVE, event0.GetAction());
  DCHECK_EQ(event0.GetPointerCount(), event1.GetPointerCount());

  const base::TimeTicks time0 = event0.GetEventTime();
  const base::TimeTicks time1 = event1.GetEventTime();
  DCHECK(time0 < time1);
  DCHECK(time0 <= resample_time);

  const float alpha = (resample_time - time0).InMillisecondsF() /
                      (time1 - time0).InMillisecondsF();

  scoped_ptr<MotionEventGeneric> event;
  const size_t pointer_count = event0.GetPointerCount();
  DCHECK_EQ(pointer_count, event1.GetPointerCount());
  for (size_t event0_i = 0; event0_i < pointer_count; ++event0_i) {
    int event1_i = event1.FindPointerIndexOfId(event0.GetPointerId(event0_i));
    DCHECK_NE(event1_i, -1);
    PointerProperties pointer = ResamplePointer(
        event0, event1, event0_i, static_cast<size_t>(event1_i), alpha);

    if (event0_i == 0) {
      event.reset(new MotionEventGeneric(
          MotionEvent::ACTION_MOVE, resample_time, pointer));
    } else {
      event->PushPointer(pointer);
    }
  }

  DCHECK(event);
  event->set_id(event0.GetId());
  event->set_button_state(event0.GetButtonState());
  return event.Pass();
}

// Synthesize a compound MotionEventGeneric event from a sequence of events.
// Events must be in non-decreasing (time) order.
scoped_ptr<MotionEventGeneric> ConsumeSamples(MotionEventVector events) {
  DCHECK(!events.empty());
  scoped_ptr<MotionEventGeneric> event(events.back());
  for (size_t i = 0; i + 1 < events.size(); ++i)
    event->PushHistoricalEvent(scoped_ptr<MotionEvent>(events[i]));
  events.weak_clear();
  return event.Pass();
}

// Consume a series of event samples, attempting to synthesize a new, synthetic
// event if the samples and sample time meet certain interpolation/extrapolation
// conditions. If such conditions are met, the provided samples will be added
// to the synthetic event's history, otherwise, the samples will be used to
// generate a basic, compound event.
// TODO(jdduke): Revisit resampling to handle cases where alternating frames
// are resampled or resampling is otherwise inconsistent, e.g., a 90hz input
// and 60hz frame signal could phase-align such that even frames yield an
// extrapolated event and odd frames are not resampled, crbug.com/399381.
scoped_ptr<MotionEventGeneric> ConsumeSamplesAndTryResampling(
    base::TimeTicks resample_time,
    MotionEventVector events,
    const MotionEvent* next) {
  const ui::MotionEvent* event0 = nullptr;
  const ui::MotionEvent* event1 = nullptr;
  if (next) {
    DCHECK(resample_time < next->GetEventTime());
    // Interpolate between current sample and future sample.
    event0 = events.back();
    event1 = next;
  } else if (events.size() >= 2) {
    // Extrapolate future sample using current sample and past sample.
    event0 = events[events.size() - 2];
    event1 = events[events.size() - 1];

    const base::TimeTicks time1 = event1->GetEventTime();
    base::TimeTicks max_predict =
        time1 +
        std::min((event1->GetEventTime() - event0->GetEventTime()) / 2,
                 base::TimeDelta::FromMilliseconds(kResampleMaxPredictionMs));
    if (resample_time > max_predict) {
      TRACE_EVENT_INSTANT2("input",
                           "MotionEventBuffer::TryResample prediction adjust",
                           TRACE_EVENT_SCOPE_THREAD,
                           "original(ms)",
                           (resample_time - time1).InMilliseconds(),
                           "adjusted(ms)",
                           (max_predict - time1).InMilliseconds());
      resample_time = max_predict;
    }
  } else {
    TRACE_EVENT_INSTANT0("input",
                         "MotionEventBuffer::TryResample insufficient data",
                         TRACE_EVENT_SCOPE_THREAD);
    return ConsumeSamples(events.Pass());
  }

  DCHECK(event0);
  DCHECK(event1);
  const base::TimeTicks time0 = event0->GetEventTime();
  const base::TimeTicks time1 = event1->GetEventTime();
  base::TimeDelta delta = time1 - time0;
  if (delta < base::TimeDelta::FromMilliseconds(kResampleMinDeltaMs)) {
    TRACE_EVENT_INSTANT1("input",
                         "MotionEventBuffer::TryResample failure",
                         TRACE_EVENT_SCOPE_THREAD,
                         "event_delta_too_small(ms)",
                         delta.InMilliseconds());
    return ConsumeSamples(events.Pass());
  }

  scoped_ptr<MotionEventGeneric> resampled_event =
      ResampleMotionEvent(*event0, *event1, resample_time);
  for (size_t i = 0; i < events.size(); ++i)
    resampled_event->PushHistoricalEvent(scoped_ptr<MotionEvent>(events[i]));
  events.weak_clear();
  return resampled_event.Pass();
}

}  // namespace

MotionEventBuffer::MotionEventBuffer(MotionEventBufferClient* client,
                                     bool enable_resampling)
    : client_(client), resample_(enable_resampling) {
}

MotionEventBuffer::~MotionEventBuffer() {
}

void MotionEventBuffer::OnMotionEvent(const MotionEvent& event) {
  DCHECK_EQ(0U, event.GetHistorySize());
  if (event.GetAction() != MotionEvent::ACTION_MOVE) {
    last_extrapolated_event_time_ = base::TimeTicks();
    if (!buffered_events_.empty())
      FlushWithoutResampling(buffered_events_.Pass());
    client_->ForwardMotionEvent(event);
    return;
  }

  // Guard against events that are *older* than the last one that may have been
  // artificially synthesized.
  if (!last_extrapolated_event_time_.is_null()) {
    DCHECK(buffered_events_.empty());
    if (event.GetEventTime() < last_extrapolated_event_time_)
      return;
    last_extrapolated_event_time_ = base::TimeTicks();
  }

  scoped_ptr<MotionEventGeneric> clone = MotionEventGeneric::CloneEvent(event);
  if (buffered_events_.empty()) {
    buffered_events_.push_back(clone.release());
    client_->SetNeedsFlush();
    return;
  }

  if (CanAddSample(*buffered_events_.front(), *clone)) {
    DCHECK(buffered_events_.back()->GetEventTime() <= clone->GetEventTime());
  } else {
    FlushWithoutResampling(buffered_events_.Pass());
  }

  buffered_events_.push_back(clone.release());
  // No need to request another flush as the first event will have requested it.
}

void MotionEventBuffer::Flush(base::TimeTicks frame_time) {
  if (buffered_events_.empty())
    return;

  // Shifting the sample time back slightly minimizes the potential for
  // misprediction when extrapolating events.
  if (resample_)
    frame_time -= base::TimeDelta::FromMilliseconds(kResampleLatencyMs);

  // TODO(jdduke): Use a persistent MotionEventVector vector for temporary
  // storage.
  MotionEventVector events(
      ConsumeSamplesNoLaterThan(&buffered_events_, frame_time));
  if (events.empty()) {
    DCHECK(!buffered_events_.empty());
    client_->SetNeedsFlush();
    return;
  }

  if (!resample_ || (events.size() == 1 && buffered_events_.empty())) {
    FlushWithoutResampling(events.Pass());
    if (!buffered_events_.empty())
      client_->SetNeedsFlush();
    return;
  }

  FlushWithResampling(events.Pass(), frame_time);
}

void MotionEventBuffer::FlushWithResampling(MotionEventVector events,
                                            base::TimeTicks resample_time) {
  DCHECK(!events.empty());
  base::TimeTicks original_event_time = events.back()->GetEventTime();
  const MotionEvent* next_event =
      !buffered_events_.empty() ? buffered_events_.front() : nullptr;

  scoped_ptr<MotionEventGeneric> resampled_event =
      ConsumeSamplesAndTryResampling(resample_time, events.Pass(), next_event);
  DCHECK(resampled_event);

  // Log the extrapolated event time, guarding against subsequently queued
  // events that might have an earlier timestamp.
  if (!next_event && resampled_event->GetEventTime() > original_event_time) {
    last_extrapolated_event_time_ = resampled_event->GetEventTime();
  } else {
    last_extrapolated_event_time_ = base::TimeTicks();
  }

  client_->ForwardMotionEvent(*resampled_event);
  if (!buffered_events_.empty())
    client_->SetNeedsFlush();
}

void MotionEventBuffer::FlushWithoutResampling(MotionEventVector events) {
  last_extrapolated_event_time_ = base::TimeTicks();
  if (events.empty())
    return;

  client_->ForwardMotionEvent(*ConsumeSamples(events.Pass()));
}

}  // namespace ui