1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/events/gesture_detection/velocity_tracker.h"
#include <cmath>
#include "base/logging.h"
#include "ui/events/gesture_detection/motion_event.h"
using base::TimeDelta;
using base::TimeTicks;
namespace ui {
// Implements a particular velocity tracker algorithm.
class VelocityTrackerStrategy {
public:
virtual ~VelocityTrackerStrategy() {}
virtual void Clear() = 0;
virtual void ClearPointers(BitSet32 id_bits) = 0;
virtual void AddMovement(const base::TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) = 0;
virtual bool GetEstimator(uint32_t id, Estimator* out_estimator) const = 0;
protected:
VelocityTrackerStrategy() {}
};
namespace {
COMPILE_ASSERT(MotionEvent::MAX_POINTER_ID < 32, max_pointer_id_too_large);
// Threshold between ACTION_MOVE events for determining that a pointer has
// stopped moving. Some input devices do not send ACTION_MOVE events in the case
// where a pointer has stopped. We need to detect this case so that we can
// accurately predict the velocity after the pointer starts moving again.
const int kAssumePointerMoveStoppedTimeMs = 40;
// Threshold between ACTION_MOVE and ACTION_{UP|POINTER_UP} events for
// determining that a pointer has stopped moving. This is a larger threshold
// than |kAssumePointerMoveStoppedTimeMs|, as some devices may delay synthesis
// of ACTION_{UP|POINTER_UP} to reduce risk of noisy release.
const int kAssumePointerUpStoppedTimeMs = 80;
struct Position {
float x, y;
};
struct Estimator {
static const uint8_t kMaxDegree = 4;
// Estimator time base.
TimeTicks time;
// Polynomial coefficients describing motion in X and Y.
float xcoeff[kMaxDegree + 1], ycoeff[kMaxDegree + 1];
// Polynomial degree (number of coefficients), or zero if no information is
// available.
uint32_t degree;
// Confidence (coefficient of determination), between 0 (no fit)
// and 1 (perfect fit).
float confidence;
inline void Clear() {
time = TimeTicks();
degree = 0;
confidence = 0;
for (size_t i = 0; i <= kMaxDegree; i++) {
xcoeff[i] = 0;
ycoeff[i] = 0;
}
}
};
float VectorDot(const float* a, const float* b, uint32_t m) {
float r = 0;
while (m--) {
r += *(a++) * *(b++);
}
return r;
}
float VectorNorm(const float* a, uint32_t m) {
float r = 0;
while (m--) {
float t = *(a++);
r += t * t;
}
return sqrtf(r);
}
// Velocity tracker algorithm based on least-squares linear regression.
class LeastSquaresVelocityTrackerStrategy : public VelocityTrackerStrategy {
public:
enum Weighting {
// No weights applied. All data points are equally reliable.
WEIGHTING_NONE,
// Weight by time delta. Data points clustered together are weighted less.
WEIGHTING_DELTA,
// Weight such that points within a certain horizon are weighed more than
// those outside of that horizon.
WEIGHTING_CENTRAL,
// Weight such that points older than a certain amount are weighed less.
WEIGHTING_RECENT,
};
enum Restriction {
// There's no restriction on the output of the velocity tracker.
RESTRICTION_NONE,
// If the velocity determined by the tracker is in a sufficiently different
// direction from the primary motion of the finger for the events being
// considered for velocity calculation, return a velocity of 0.
RESTRICTION_ALIGNED_DIRECTIONS
};
// Number of samples to keep.
static const uint8_t kHistorySize = 20;
// Degree must be no greater than Estimator::kMaxDegree.
LeastSquaresVelocityTrackerStrategy(
uint32_t degree,
Weighting weighting,
Restriction restriction);
~LeastSquaresVelocityTrackerStrategy() override;
void Clear() override;
void ClearPointers(BitSet32 id_bits) override;
void AddMovement(const TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) override;
bool GetEstimator(uint32_t id, Estimator* out_estimator) const override;
private:
// Sample horizon.
// We don't use too much history by default since we want to react to quick
// changes in direction.
static const uint8_t kHorizonMS = 100;
struct Movement {
TimeTicks event_time;
BitSet32 id_bits;
Position positions[VelocityTracker::MAX_POINTERS];
inline const Position& GetPosition(uint32_t id) const {
return positions[id_bits.get_index_of_bit(id)];
}
};
float ChooseWeight(uint32_t index) const;
const uint32_t degree_;
const Weighting weighting_;
const Restriction restriction_;
uint32_t index_;
Movement movements_[kHistorySize];
};
// Velocity tracker algorithm that uses an IIR filter.
class IntegratingVelocityTrackerStrategy : public VelocityTrackerStrategy {
public:
// Degree must be 1 or 2.
explicit IntegratingVelocityTrackerStrategy(uint32_t degree);
~IntegratingVelocityTrackerStrategy() override;
void Clear() override;
void ClearPointers(BitSet32 id_bits) override;
void AddMovement(const TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) override;
bool GetEstimator(uint32_t id, Estimator* out_estimator) const override;
private:
// Current state estimate for a particular pointer.
struct State {
TimeTicks update_time;
uint32_t degree;
float xpos, xvel, xaccel;
float ypos, yvel, yaccel;
};
const uint32_t degree_;
BitSet32 pointer_id_bits_;
State mPointerState[MotionEvent::MAX_POINTER_ID + 1];
void InitState(State& state,
const TimeTicks& event_time,
float xpos,
float ypos) const;
void UpdateState(State& state,
const TimeTicks& event_time,
float xpos,
float ypos) const;
void PopulateEstimator(const State& state, Estimator* out_estimator) const;
};
VelocityTrackerStrategy* CreateStrategy(VelocityTracker::Strategy strategy) {
LeastSquaresVelocityTrackerStrategy::Weighting none =
LeastSquaresVelocityTrackerStrategy::WEIGHTING_NONE;
LeastSquaresVelocityTrackerStrategy::Restriction no_restriction =
LeastSquaresVelocityTrackerStrategy::RESTRICTION_NONE;
switch (strategy) {
case VelocityTracker::LSQ1:
return new LeastSquaresVelocityTrackerStrategy(1, none, no_restriction);
case VelocityTracker::LSQ2:
return new LeastSquaresVelocityTrackerStrategy(2, none, no_restriction);
case VelocityTracker::LSQ2_RESTRICTED:
return new LeastSquaresVelocityTrackerStrategy(
2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_NONE,
LeastSquaresVelocityTrackerStrategy::RESTRICTION_ALIGNED_DIRECTIONS);
case VelocityTracker::LSQ3:
return new LeastSquaresVelocityTrackerStrategy(3, none, no_restriction);
case VelocityTracker::WLSQ2_DELTA:
return new LeastSquaresVelocityTrackerStrategy(
2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA,
no_restriction);
case VelocityTracker::WLSQ2_CENTRAL:
return new LeastSquaresVelocityTrackerStrategy(
2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL,
no_restriction);
case VelocityTracker::WLSQ2_RECENT:
return new LeastSquaresVelocityTrackerStrategy(
2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT,
no_restriction);
case VelocityTracker::INT1:
return new IntegratingVelocityTrackerStrategy(1);
case VelocityTracker::INT2:
return new IntegratingVelocityTrackerStrategy(2);
}
NOTREACHED() << "Unrecognized velocity tracker strategy: " << strategy;
// Quadratic regression is a safe default.
return CreateStrategy(VelocityTracker::STRATEGY_DEFAULT);
}
} // namespace
// --- VelocityTracker ---
VelocityTracker::VelocityTracker(Strategy strategy)
: current_pointer_id_bits_(0),
active_pointer_id_(-1),
strategy_(CreateStrategy(strategy)) {}
VelocityTracker::~VelocityTracker() {}
void VelocityTracker::Clear() {
current_pointer_id_bits_.clear();
active_pointer_id_ = -1;
strategy_->Clear();
}
void VelocityTracker::ClearPointers(BitSet32 id_bits) {
BitSet32 remaining_id_bits(current_pointer_id_bits_.value & ~id_bits.value);
current_pointer_id_bits_ = remaining_id_bits;
if (active_pointer_id_ >= 0 && id_bits.has_bit(active_pointer_id_)) {
active_pointer_id_ = !remaining_id_bits.is_empty()
? remaining_id_bits.first_marked_bit()
: -1;
}
strategy_->ClearPointers(id_bits);
}
void VelocityTracker::AddMovement(const TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) {
while (id_bits.count() > MAX_POINTERS)
id_bits.clear_last_marked_bit();
if ((current_pointer_id_bits_.value & id_bits.value) &&
(event_time - last_event_time_) >=
base::TimeDelta::FromMilliseconds(kAssumePointerMoveStoppedTimeMs)) {
// We have not received any movements for too long. Assume that all pointers
// have stopped.
strategy_->Clear();
}
last_event_time_ = event_time;
current_pointer_id_bits_ = id_bits;
if (active_pointer_id_ < 0 || !id_bits.has_bit(active_pointer_id_))
active_pointer_id_ = id_bits.is_empty() ? -1 : id_bits.first_marked_bit();
strategy_->AddMovement(event_time, id_bits, positions);
}
void VelocityTracker::AddMovement(const MotionEvent& event) {
int32_t actionMasked = event.GetAction();
switch (actionMasked) {
case MotionEvent::ACTION_DOWN:
// case MotionEvent::HOVER_ENTER:
// Clear all pointers on down before adding the new movement.
Clear();
break;
case MotionEvent::ACTION_POINTER_DOWN: {
// Start a new movement trace for a pointer that just went down.
// We do this on down instead of on up because the client may want to
// query the final velocity for a pointer that just went up.
BitSet32 downIdBits;
downIdBits.mark_bit(event.GetPointerId(event.GetActionIndex()));
ClearPointers(downIdBits);
break;
}
case MotionEvent::ACTION_MOVE:
// case MotionEvent::ACTION_HOVER_MOVE:
break;
case MotionEvent::ACTION_UP:
case MotionEvent::ACTION_POINTER_UP:
// Note that ACTION_UP and ACTION_POINTER_UP always report the last known
// position of the pointers that went up. ACTION_POINTER_UP does include
// the new position of pointers that remained down but we will also
// receive an ACTION_MOVE with this information if any of them actually
// moved. Since we don't know how many pointers will be going up at once
// it makes sense to just wait for the following ACTION_MOVE before adding
// the movement. However, if the up event itself is delayed because of
// (difficult albeit possible) prolonged stationary screen contact, assume
// that motion has stopped.
if ((event.GetEventTime() - last_event_time_) >=
base::TimeDelta::FromMilliseconds(kAssumePointerUpStoppedTimeMs))
strategy_->Clear();
return;
default:
// Ignore all other actions because they do not convey any new information
// about pointer movement. We also want to preserve the last known
// velocity of the pointers.
return;
}
size_t pointer_count = event.GetPointerCount();
if (pointer_count > MAX_POINTERS) {
pointer_count = MAX_POINTERS;
}
BitSet32 id_bits;
for (size_t i = 0; i < pointer_count; i++) {
id_bits.mark_bit(event.GetPointerId(i));
}
uint32_t pointer_index[MAX_POINTERS];
for (size_t i = 0; i < pointer_count; i++) {
pointer_index[i] = id_bits.get_index_of_bit(event.GetPointerId(i));
}
Position positions[MAX_POINTERS];
size_t historySize = event.GetHistorySize();
for (size_t h = 0; h < historySize; h++) {
for (size_t i = 0; i < pointer_count; i++) {
uint32_t index = pointer_index[i];
positions[index].x = event.GetHistoricalX(i, h);
positions[index].y = event.GetHistoricalY(i, h);
}
AddMovement(event.GetHistoricalEventTime(h), id_bits, positions);
}
for (size_t i = 0; i < pointer_count; i++) {
uint32_t index = pointer_index[i];
positions[index].x = event.GetX(i);
positions[index].y = event.GetY(i);
}
AddMovement(event.GetEventTime(), id_bits, positions);
}
bool VelocityTracker::GetVelocity(uint32_t id,
float* out_vx,
float* out_vy) const {
Estimator estimator;
if (GetEstimator(id, &estimator) && estimator.degree >= 1) {
*out_vx = estimator.xcoeff[1];
*out_vy = estimator.ycoeff[1];
return true;
}
*out_vx = 0;
*out_vy = 0;
return false;
}
void LeastSquaresVelocityTrackerStrategy::AddMovement(
const TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) {
if (++index_ == kHistorySize) {
index_ = 0;
}
Movement& movement = movements_[index_];
movement.event_time = event_time;
movement.id_bits = id_bits;
uint32_t count = id_bits.count();
for (uint32_t i = 0; i < count; i++) {
movement.positions[i] = positions[i];
}
}
bool VelocityTracker::GetEstimator(uint32_t id,
Estimator* out_estimator) const {
return strategy_->GetEstimator(id, out_estimator);
}
// --- LeastSquaresVelocityTrackerStrategy ---
LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
uint32_t degree,
Weighting weighting,
Restriction restriction)
: degree_(degree),
weighting_(weighting),
restriction_(restriction) {
DCHECK_LT(degree_, static_cast<uint32_t>(Estimator::kMaxDegree));
Clear();
}
LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {}
void LeastSquaresVelocityTrackerStrategy::Clear() {
index_ = 0;
movements_[0].id_bits.clear();
}
/**
* Solves a linear least squares problem to obtain a N degree polynomial that
* fits the specified input data as nearly as possible.
*
* Returns true if a solution is found, false otherwise.
*
* The input consists of two vectors of data points X and Y with indices 0..m-1
* along with a weight vector W of the same size.
*
* The output is a vector B with indices 0..n that describes a polynomial
* that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1]
* X[i] * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is
* minimized.
*
* Accordingly, the weight vector W should be initialized by the caller with the
* reciprocal square root of the variance of the error in each input data point.
* In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 /
* stddev(Y[i]).
* The weights express the relative importance of each data point. If the
* weights are* all 1, then the data points are considered to be of equal
* importance when fitting the polynomial. It is a good idea to choose weights
* that diminish the importance of data points that may have higher than usual
* error margins.
*
* Errors among data points are assumed to be independent. W is represented
* here as a vector although in the literature it is typically taken to be a
* diagonal matrix.
*
* That is to say, the function that generated the input data can be
* approximated by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
*
* The coefficient of determination (R^2) is also returned to describe the
* goodness of fit of the model for the given data. It is a value between 0
* and 1, where 1 indicates perfect correspondence.
*
* This function first expands the X vector to a m by n matrix A such that
* A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
* multiplies it by w[i]./
*
* Then it calculates the QR decomposition of A yielding an m by m orthonormal
* matrix Q and an m by n upper triangular matrix R. Because R is upper
* triangular (lower part is all zeroes), we can simplify the decomposition into
* an m by n matrix Q1 and a n by n matrix R1 such that A = Q1 R1.
*
* Finally we solve the system of linear equations given by
* R1 B = (Qtranspose W Y) to find B.
*
* For efficiency, we lay out A and Q column-wise in memory because we
* frequently operate on the column vectors. Conversely, we lay out R row-wise.
*
* http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
* http://en.wikipedia.org/wiki/Gram-Schmidt
*/
static bool SolveLeastSquares(const float* x,
const float* y,
const float* w,
uint32_t m,
uint32_t n,
float* out_b,
float* out_det) {
// MSVC does not support variable-length arrays (used by the original Android
// implementation of this function).
#if defined(COMPILER_MSVC)
const uint32_t M_ARRAY_LENGTH =
LeastSquaresVelocityTrackerStrategy::kHistorySize;
const uint32_t N_ARRAY_LENGTH = Estimator::kMaxDegree;
DCHECK_LE(m, M_ARRAY_LENGTH);
DCHECK_LE(n, N_ARRAY_LENGTH);
#else
const uint32_t M_ARRAY_LENGTH = m;
const uint32_t N_ARRAY_LENGTH = n;
#endif
// Expand the X vector to a matrix A, pre-multiplied by the weights.
float a[N_ARRAY_LENGTH][M_ARRAY_LENGTH]; // column-major order
for (uint32_t h = 0; h < m; h++) {
a[0][h] = w[h];
for (uint32_t i = 1; i < n; i++) {
a[i][h] = a[i - 1][h] * x[h];
}
}
// Apply the Gram-Schmidt process to A to obtain its QR decomposition.
// Orthonormal basis, column-major order.
float q[N_ARRAY_LENGTH][M_ARRAY_LENGTH];
// Upper triangular matrix, row-major order.
float r[N_ARRAY_LENGTH][N_ARRAY_LENGTH];
for (uint32_t j = 0; j < n; j++) {
for (uint32_t h = 0; h < m; h++) {
q[j][h] = a[j][h];
}
for (uint32_t i = 0; i < j; i++) {
float dot = VectorDot(&q[j][0], &q[i][0], m);
for (uint32_t h = 0; h < m; h++) {
q[j][h] -= dot * q[i][h];
}
}
float norm = VectorNorm(&q[j][0], m);
if (norm < 0.000001f) {
// vectors are linearly dependent or zero so no solution
return false;
}
float invNorm = 1.0f / norm;
for (uint32_t h = 0; h < m; h++) {
q[j][h] *= invNorm;
}
for (uint32_t i = 0; i < n; i++) {
r[j][i] = i < j ? 0 : VectorDot(&q[j][0], &a[i][0], m);
}
}
// Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
// We just work from bottom-right to top-left calculating B's coefficients.
float wy[M_ARRAY_LENGTH];
for (uint32_t h = 0; h < m; h++) {
wy[h] = y[h] * w[h];
}
for (uint32_t i = n; i-- != 0;) {
out_b[i] = VectorDot(&q[i][0], wy, m);
for (uint32_t j = n - 1; j > i; j--) {
out_b[i] -= r[i][j] * out_b[j];
}
out_b[i] /= r[i][i];
}
// Calculate the coefficient of determination as 1 - (SSerr / SStot) where
// SSerr is the residual sum of squares (variance of the error),
// and SStot is the total sum of squares (variance of the data) where each
// has been weighted.
float ymean = 0;
for (uint32_t h = 0; h < m; h++) {
ymean += y[h];
}
ymean /= m;
float sserr = 0;
float sstot = 0;
for (uint32_t h = 0; h < m; h++) {
float err = y[h] - out_b[0];
float term = 1;
for (uint32_t i = 1; i < n; i++) {
term *= x[h];
err -= term * out_b[i];
}
sserr += w[h] * w[h] * err * err;
float var = y[h] - ymean;
sstot += w[h] * w[h] * var * var;
}
*out_det = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
return true;
}
void LeastSquaresVelocityTrackerStrategy::ClearPointers(BitSet32 id_bits) {
BitSet32 remaining_id_bits(movements_[index_].id_bits.value & ~id_bits.value);
movements_[index_].id_bits = remaining_id_bits;
}
bool LeastSquaresVelocityTrackerStrategy::GetEstimator(
uint32_t id,
Estimator* out_estimator) const {
out_estimator->Clear();
// Iterate over movement samples in reverse time order and collect samples.
float x[kHistorySize];
float y[kHistorySize];
float w[kHistorySize];
float time[kHistorySize];
uint32_t m = 0;
uint32_t index = index_;
const base::TimeDelta horizon = base::TimeDelta::FromMilliseconds(kHorizonMS);
const Movement& newest_movement = movements_[index_];
const Movement* first_movement = nullptr;
do {
const Movement& movement = movements_[index];
if (!movement.id_bits.has_bit(id))
break;
first_movement = &movement;
TimeDelta age = newest_movement.event_time - movement.event_time;
if (age > horizon)
break;
const Position& position = movement.GetPosition(id);
x[m] = position.x;
y[m] = position.y;
w[m] = ChooseWeight(index);
time[m] = -static_cast<float>(age.InSecondsF());
index = (index == 0 ? kHistorySize : index) - 1;
} while (++m < kHistorySize);
if (m == 0)
return false; // no data
// Calculate a least squares polynomial fit.
uint32_t degree = degree_;
if (degree > m - 1)
degree = m - 1;
if (degree >= 1) {
float xdet, ydet;
uint32_t n = degree + 1;
if (SolveLeastSquares(time, x, w, m, n, out_estimator->xcoeff, &xdet) &&
SolveLeastSquares(time, y, w, m, n, out_estimator->ycoeff, &ydet)) {
if (restriction_ == RESTRICTION_ALIGNED_DIRECTIONS) {
DCHECK(first_movement);
float dx = newest_movement.GetPosition(id).x -
first_movement->GetPosition(id).x;
float dy = newest_movement.GetPosition(id).y -
first_movement->GetPosition(id).y;
// If the velocity is in a sufficiently different direction from the
// primary movement, ignore it.
if (out_estimator->xcoeff[1] * dx + out_estimator->ycoeff[1] * dy < 0)
return false;
}
out_estimator->time = newest_movement.event_time;
out_estimator->degree = degree;
out_estimator->confidence = xdet * ydet;
return true;
}
}
// No velocity data available for this pointer, but we do have its current
// position.
out_estimator->xcoeff[0] = x[0];
out_estimator->ycoeff[0] = y[0];
out_estimator->time = newest_movement.event_time;
out_estimator->degree = 0;
out_estimator->confidence = 1;
return true;
}
float LeastSquaresVelocityTrackerStrategy::ChooseWeight(uint32_t index) const {
switch (weighting_) {
case WEIGHTING_DELTA: {
// Weight points based on how much time elapsed between them and the next
// point so that points that "cover" a shorter time span are weighed less.
// delta 0ms: 0.5
// delta 10ms: 1.0
if (index == index_) {
return 1.0f;
}
uint32_t next_index = (index + 1) % kHistorySize;
float delta_millis =
static_cast<float>((movements_[next_index].event_time -
movements_[index].event_time).InMillisecondsF());
if (delta_millis < 0)
return 0.5f;
if (delta_millis < 10)
return 0.5f + delta_millis * 0.05f;
return 1.0f;
}
case WEIGHTING_CENTRAL: {
// Weight points based on their age, weighing very recent and very old
// points less.
// age 0ms: 0.5
// age 10ms: 1.0
// age 50ms: 1.0
// age 60ms: 0.5
float age_millis =
static_cast<float>((movements_[index_].event_time -
movements_[index].event_time).InMillisecondsF());
if (age_millis < 0)
return 0.5f;
if (age_millis < 10)
return 0.5f + age_millis * 0.05f;
if (age_millis < 50)
return 1.0f;
if (age_millis < 60)
return 0.5f + (60 - age_millis) * 0.05f;
return 0.5f;
}
case WEIGHTING_RECENT: {
// Weight points based on their age, weighing older points less.
// age 0ms: 1.0
// age 50ms: 1.0
// age 100ms: 0.5
float age_millis =
static_cast<float>((movements_[index_].event_time -
movements_[index].event_time).InMillisecondsF());
if (age_millis < 50) {
return 1.0f;
}
if (age_millis < 100) {
return 0.5f + (100 - age_millis) * 0.01f;
}
return 0.5f;
}
case WEIGHTING_NONE:
default:
return 1.0f;
}
}
// --- IntegratingVelocityTrackerStrategy ---
IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(
uint32_t degree)
: degree_(degree) {
DCHECK_LT(degree_, static_cast<uint32_t>(Estimator::kMaxDegree));
}
IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {}
void IntegratingVelocityTrackerStrategy::Clear() { pointer_id_bits_.clear(); }
void IntegratingVelocityTrackerStrategy::ClearPointers(BitSet32 id_bits) {
pointer_id_bits_.value &= ~id_bits.value;
}
void IntegratingVelocityTrackerStrategy::AddMovement(
const TimeTicks& event_time,
BitSet32 id_bits,
const Position* positions) {
uint32_t index = 0;
for (BitSet32 iter_id_bits(id_bits); !iter_id_bits.is_empty();) {
uint32_t id = iter_id_bits.clear_first_marked_bit();
State& state = mPointerState[id];
const Position& position = positions[index++];
if (pointer_id_bits_.has_bit(id))
UpdateState(state, event_time, position.x, position.y);
else
InitState(state, event_time, position.x, position.y);
}
pointer_id_bits_ = id_bits;
}
bool IntegratingVelocityTrackerStrategy::GetEstimator(
uint32_t id,
Estimator* out_estimator) const {
out_estimator->Clear();
if (pointer_id_bits_.has_bit(id)) {
const State& state = mPointerState[id];
PopulateEstimator(state, out_estimator);
return true;
}
return false;
}
void IntegratingVelocityTrackerStrategy::InitState(State& state,
const TimeTicks& event_time,
float xpos,
float ypos) const {
state.update_time = event_time;
state.degree = 0;
state.xpos = xpos;
state.xvel = 0;
state.xaccel = 0;
state.ypos = ypos;
state.yvel = 0;
state.yaccel = 0;
}
void IntegratingVelocityTrackerStrategy::UpdateState(
State& state,
const TimeTicks& event_time,
float xpos,
float ypos) const {
const base::TimeDelta MIN_TIME_DELTA = TimeDelta::FromMicroseconds(2);
const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
if (event_time <= state.update_time + MIN_TIME_DELTA)
return;
float dt = static_cast<float>((event_time - state.update_time).InSecondsF());
state.update_time = event_time;
float xvel = (xpos - state.xpos) / dt;
float yvel = (ypos - state.ypos) / dt;
if (state.degree == 0) {
state.xvel = xvel;
state.yvel = yvel;
state.degree = 1;
} else {
float alpha = dt / (FILTER_TIME_CONSTANT + dt);
if (degree_ == 1) {
state.xvel += (xvel - state.xvel) * alpha;
state.yvel += (yvel - state.yvel) * alpha;
} else {
float xaccel = (xvel - state.xvel) / dt;
float yaccel = (yvel - state.yvel) / dt;
if (state.degree == 1) {
state.xaccel = xaccel;
state.yaccel = yaccel;
state.degree = 2;
} else {
state.xaccel += (xaccel - state.xaccel) * alpha;
state.yaccel += (yaccel - state.yaccel) * alpha;
}
state.xvel += (state.xaccel * dt) * alpha;
state.yvel += (state.yaccel * dt) * alpha;
}
}
state.xpos = xpos;
state.ypos = ypos;
}
void IntegratingVelocityTrackerStrategy::PopulateEstimator(
const State& state,
Estimator* out_estimator) const {
out_estimator->time = state.update_time;
out_estimator->confidence = 1.0f;
out_estimator->degree = state.degree;
out_estimator->xcoeff[0] = state.xpos;
out_estimator->xcoeff[1] = state.xvel;
out_estimator->xcoeff[2] = state.xaccel / 2;
out_estimator->ycoeff[0] = state.ypos;
out_estimator->ycoeff[1] = state.yvel;
out_estimator->ycoeff[2] = state.yaccel / 2;
}
} // namespace ui
|