File: cubic_bezier_unittest.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (195 lines) | stat: -rw-r--r-- 7,124 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/geometry/cubic_bezier.h"

#include "base/memory/scoped_ptr.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace gfx {
namespace {

TEST(CubicBezierTest, Basic) {
  CubicBezier function(0.25, 0.0, 0.75, 1.0);

  double epsilon = 0.00015;

  EXPECT_NEAR(function.Solve(0), 0, epsilon);
  EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon);
  EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon);
  EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon);
  EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon);
  EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon);
  EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon);
  EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon);
  EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon);
  EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon);
  EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon);
  EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon);
  EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon);
  EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon);
  EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon);
  EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon);
  EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon);
  EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon);
  EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon);
  EXPECT_NEAR(function.Solve(1), 1, epsilon);
}

// Tests that solving the bezier works with knots with y not in (0, 1).
TEST(CubicBezierTest, UnclampedYValues) {
  CubicBezier function(0.5, -1.0, 0.5, 2.0);

  double epsilon = 0.00015;

  EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon);
  EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon);
  EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon);
  EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon);
  EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon);
  EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon);
  EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon);
  EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon);
  EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon);
  EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon);
  EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon);
  EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon);
  EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon);
  EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon);
  EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon);
  EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon);
  EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon);
  EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon);
  EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon);
  EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon);
  EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon);
}

TEST(CubicBezierTest, Range) {
  double epsilon = 0.00015;
  double min, max;

  // Derivative is a constant.
  scoped_ptr<CubicBezier> function(
      new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_EQ(1, max);

  // Derivative is linear.
  function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0)));
  function->Range(&min, &max);
  EXPECT_NEAR(min, -0.225, epsilon);
  EXPECT_EQ(1, max);

  // Derivative has no real roots.
  function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_EQ(1, max);

  // Derivative has exactly one real root.
  function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_EQ(1, max);

  // Derivative has one root < 0 and one root > 1.
  function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_EQ(1, max);

  // Derivative has two roots in [0,1].
  function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_NEAR(max, 1.28818, epsilon);
  function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5));
  function->Range(&min, &max);
  EXPECT_NEAR(min, -0.28818, epsilon);
  EXPECT_EQ(1, max);

  // Derivative has one root < 0 and one root in [0,1].
  function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_NEAR(max, 1.10755, epsilon);

  // Derivative has one root in [0,1] and one root > 1.
  function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9));
  function->Range(&min, &max);
  EXPECT_NEAR(min, -0.10755, epsilon);
  EXPECT_EQ(1, max);

  // Derivative has two roots < 0.
  function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633));
  function->Range(&min, &max);
  EXPECT_EQ(0, min);
  EXPECT_EQ(1, max);

  // Derivative has two roots > 1.
  function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7));
  function->Range(&min, &max);
  EXPECT_EQ(0.f, min);
  EXPECT_EQ(1.f, max);
}

TEST(CubicBezierTest, Slope) {
  CubicBezier function(0.25, 0.0, 0.75, 1.0);

  double epsilon = 0.00015;

  EXPECT_NEAR(function.Slope(0), 0, epsilon);
  EXPECT_NEAR(function.Slope(0.05), 0.42170, epsilon);
  EXPECT_NEAR(function.Slope(0.1), 0.69778, epsilon);
  EXPECT_NEAR(function.Slope(0.15), 0.89121, epsilon);
  EXPECT_NEAR(function.Slope(0.2), 1.03184, epsilon);
  EXPECT_NEAR(function.Slope(0.25), 1.13576, epsilon);
  EXPECT_NEAR(function.Slope(0.3), 1.21239, epsilon);
  EXPECT_NEAR(function.Slope(0.35), 1.26751, epsilon);
  EXPECT_NEAR(function.Slope(0.4), 1.30474, epsilon);
  EXPECT_NEAR(function.Slope(0.45), 1.32628, epsilon);
  EXPECT_NEAR(function.Slope(0.5), 1.33333, epsilon);
  EXPECT_NEAR(function.Slope(0.55), 1.32628, epsilon);
  EXPECT_NEAR(function.Slope(0.6), 1.30474, epsilon);
  EXPECT_NEAR(function.Slope(0.65), 1.26751, epsilon);
  EXPECT_NEAR(function.Slope(0.7), 1.21239, epsilon);
  EXPECT_NEAR(function.Slope(0.75), 1.13576, epsilon);
  EXPECT_NEAR(function.Slope(0.8), 1.03184, epsilon);
  EXPECT_NEAR(function.Slope(0.85), 0.89121, epsilon);
  EXPECT_NEAR(function.Slope(0.9), 0.69778, epsilon);
  EXPECT_NEAR(function.Slope(0.95), 0.42170, epsilon);
  EXPECT_NEAR(function.Slope(1), 0, epsilon);
}

TEST(CubicBezierTest, InputOutOfRange) {
  CubicBezier simple(0.5, 1.0, 0.5, 1.0);
  EXPECT_EQ(-2.0, simple.Solve(-1.0));
  EXPECT_EQ(1.0, simple.Solve(2.0));

  CubicBezier coincidentEndpoints(0.0, 0.0, 1.0, 1.0);
  EXPECT_EQ(-1.0, coincidentEndpoints.Solve(-1.0));
  EXPECT_EQ(2.0, coincidentEndpoints.Solve(2.0));

  CubicBezier verticalGradient(0.0, 1.0, 1.0, 0.0);
  EXPECT_EQ(0.0, verticalGradient.Solve(-1.0));
  EXPECT_EQ(1.0, verticalGradient.Solve(2.0));

  CubicBezier distinctEndpoints(0.1, 0.2, 0.8, 0.8);
  EXPECT_EQ(-2.0, distinctEndpoints.Solve(-1.0));
  EXPECT_EQ(2.0, distinctEndpoints.Solve(2.0));

  CubicBezier coincidentEndpoint(0.0, 0.0, 0.8, 0.8);
  EXPECT_EQ(-1.0, coincidentEndpoint.Solve(-1.0));
  EXPECT_EQ(2.0, coincidentEndpoint.Solve(2.0));

  CubicBezier threeCoincidentPoints(0.0, 0.0, 0.0, 0.0);
  EXPECT_EQ(0, threeCoincidentPoints.Solve(-1.0));
  EXPECT_EQ(2.0, threeCoincidentPoints.Solve(2.0));

}

}  // namespace
}  // namespace gfx