1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/cubic_bezier.h"
#include "base/memory/scoped_ptr.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gfx {
namespace {
TEST(CubicBezierTest, Basic) {
CubicBezier function(0.25, 0.0, 0.75, 1.0);
double epsilon = 0.00015;
EXPECT_NEAR(function.Solve(0), 0, epsilon);
EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon);
EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon);
EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon);
EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon);
EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon);
EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon);
EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon);
EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon);
EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon);
EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon);
EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon);
EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon);
EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon);
EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon);
EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon);
EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon);
EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon);
EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon);
EXPECT_NEAR(function.Solve(1), 1, epsilon);
}
// Tests that solving the bezier works with knots with y not in (0, 1).
TEST(CubicBezierTest, UnclampedYValues) {
CubicBezier function(0.5, -1.0, 0.5, 2.0);
double epsilon = 0.00015;
EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon);
EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon);
EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon);
EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon);
EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon);
EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon);
EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon);
EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon);
EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon);
EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon);
EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon);
EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon);
EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon);
EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon);
EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon);
EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon);
EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon);
EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon);
EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon);
EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon);
EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon);
}
TEST(CubicBezierTest, Range) {
double epsilon = 0.00015;
double min, max;
// Derivative is a constant.
scoped_ptr<CubicBezier> function(
new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_EQ(1, max);
// Derivative is linear.
function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0)));
function->Range(&min, &max);
EXPECT_NEAR(min, -0.225, epsilon);
EXPECT_EQ(1, max);
// Derivative has no real roots.
function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_EQ(1, max);
// Derivative has exactly one real root.
function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_EQ(1, max);
// Derivative has one root < 0 and one root > 1.
function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_EQ(1, max);
// Derivative has two roots in [0,1].
function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_NEAR(max, 1.28818, epsilon);
function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5));
function->Range(&min, &max);
EXPECT_NEAR(min, -0.28818, epsilon);
EXPECT_EQ(1, max);
// Derivative has one root < 0 and one root in [0,1].
function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_NEAR(max, 1.10755, epsilon);
// Derivative has one root in [0,1] and one root > 1.
function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9));
function->Range(&min, &max);
EXPECT_NEAR(min, -0.10755, epsilon);
EXPECT_EQ(1, max);
// Derivative has two roots < 0.
function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633));
function->Range(&min, &max);
EXPECT_EQ(0, min);
EXPECT_EQ(1, max);
// Derivative has two roots > 1.
function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7));
function->Range(&min, &max);
EXPECT_EQ(0.f, min);
EXPECT_EQ(1.f, max);
}
TEST(CubicBezierTest, Slope) {
CubicBezier function(0.25, 0.0, 0.75, 1.0);
double epsilon = 0.00015;
EXPECT_NEAR(function.Slope(0), 0, epsilon);
EXPECT_NEAR(function.Slope(0.05), 0.42170, epsilon);
EXPECT_NEAR(function.Slope(0.1), 0.69778, epsilon);
EXPECT_NEAR(function.Slope(0.15), 0.89121, epsilon);
EXPECT_NEAR(function.Slope(0.2), 1.03184, epsilon);
EXPECT_NEAR(function.Slope(0.25), 1.13576, epsilon);
EXPECT_NEAR(function.Slope(0.3), 1.21239, epsilon);
EXPECT_NEAR(function.Slope(0.35), 1.26751, epsilon);
EXPECT_NEAR(function.Slope(0.4), 1.30474, epsilon);
EXPECT_NEAR(function.Slope(0.45), 1.32628, epsilon);
EXPECT_NEAR(function.Slope(0.5), 1.33333, epsilon);
EXPECT_NEAR(function.Slope(0.55), 1.32628, epsilon);
EXPECT_NEAR(function.Slope(0.6), 1.30474, epsilon);
EXPECT_NEAR(function.Slope(0.65), 1.26751, epsilon);
EXPECT_NEAR(function.Slope(0.7), 1.21239, epsilon);
EXPECT_NEAR(function.Slope(0.75), 1.13576, epsilon);
EXPECT_NEAR(function.Slope(0.8), 1.03184, epsilon);
EXPECT_NEAR(function.Slope(0.85), 0.89121, epsilon);
EXPECT_NEAR(function.Slope(0.9), 0.69778, epsilon);
EXPECT_NEAR(function.Slope(0.95), 0.42170, epsilon);
EXPECT_NEAR(function.Slope(1), 0, epsilon);
}
TEST(CubicBezierTest, InputOutOfRange) {
CubicBezier simple(0.5, 1.0, 0.5, 1.0);
EXPECT_EQ(-2.0, simple.Solve(-1.0));
EXPECT_EQ(1.0, simple.Solve(2.0));
CubicBezier coincidentEndpoints(0.0, 0.0, 1.0, 1.0);
EXPECT_EQ(-1.0, coincidentEndpoints.Solve(-1.0));
EXPECT_EQ(2.0, coincidentEndpoints.Solve(2.0));
CubicBezier verticalGradient(0.0, 1.0, 1.0, 0.0);
EXPECT_EQ(0.0, verticalGradient.Solve(-1.0));
EXPECT_EQ(1.0, verticalGradient.Solve(2.0));
CubicBezier distinctEndpoints(0.1, 0.2, 0.8, 0.8);
EXPECT_EQ(-2.0, distinctEndpoints.Solve(-1.0));
EXPECT_EQ(2.0, distinctEndpoints.Solve(2.0));
CubicBezier coincidentEndpoint(0.0, 0.0, 0.8, 0.8);
EXPECT_EQ(-1.0, coincidentEndpoint.Solve(-1.0));
EXPECT_EQ(2.0, coincidentEndpoint.Solve(2.0));
CubicBezier threeCoincidentPoints(0.0, 0.0, 0.0, 0.0);
EXPECT_EQ(0, threeCoincidentPoints.Solve(-1.0));
EXPECT_EQ(2.0, threeCoincidentPoints.Solve(2.0));
}
} // namespace
} // namespace gfx
|