1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/matrix3_f.h"
#include <algorithm>
#include <cmath>
#include <limits>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace {
// This is only to make accessing indices self-explanatory.
enum MatrixCoordinates {
M00,
M01,
M02,
M10,
M11,
M12,
M20,
M21,
M22,
M_END
};
template<typename T>
double Determinant3x3(T data[M_END]) {
// This routine is separated from the Matrix3F::Determinant because in
// computing inverse we do want higher precision afforded by the explicit
// use of 'double'.
return
static_cast<double>(data[M00]) * (
static_cast<double>(data[M11]) * data[M22] -
static_cast<double>(data[M12]) * data[M21]) +
static_cast<double>(data[M01]) * (
static_cast<double>(data[M12]) * data[M20] -
static_cast<double>(data[M10]) * data[M22]) +
static_cast<double>(data[M02]) * (
static_cast<double>(data[M10]) * data[M21] -
static_cast<double>(data[M11]) * data[M20]);
}
} // namespace
namespace gfx {
Matrix3F::Matrix3F() {
}
Matrix3F::~Matrix3F() {
}
// static
Matrix3F Matrix3F::Zeros() {
Matrix3F matrix;
matrix.set(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
return matrix;
}
// static
Matrix3F Matrix3F::Ones() {
Matrix3F matrix;
matrix.set(1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f);
return matrix;
}
// static
Matrix3F Matrix3F::Identity() {
Matrix3F matrix;
matrix.set(1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
return matrix;
}
// static
Matrix3F Matrix3F::FromOuterProduct(const Vector3dF& a, const Vector3dF& bt) {
Matrix3F matrix;
matrix.set(a.x() * bt.x(), a.x() * bt.y(), a.x() * bt.z(),
a.y() * bt.x(), a.y() * bt.y(), a.y() * bt.z(),
a.z() * bt.x(), a.z() * bt.y(), a.z() * bt.z());
return matrix;
}
bool Matrix3F::IsEqual(const Matrix3F& rhs) const {
return 0 == memcmp(data_, rhs.data_, sizeof(data_));
}
bool Matrix3F::IsNear(const Matrix3F& rhs, float precision) const {
DCHECK(precision >= 0);
for (int i = 0; i < M_END; ++i) {
if (std::abs(data_[i] - rhs.data_[i]) > precision)
return false;
}
return true;
}
Matrix3F Matrix3F::Inverse() const {
Matrix3F inverse = Matrix3F::Zeros();
double determinant = Determinant3x3(data_);
if (std::numeric_limits<float>::epsilon() > std::abs(determinant))
return inverse; // Singular matrix. Return Zeros().
inverse.set(
static_cast<float>((data_[M11] * data_[M22] - data_[M12] * data_[M21]) /
determinant),
static_cast<float>((data_[M02] * data_[M21] - data_[M01] * data_[M22]) /
determinant),
static_cast<float>((data_[M01] * data_[M12] - data_[M02] * data_[M11]) /
determinant),
static_cast<float>((data_[M12] * data_[M20] - data_[M10] * data_[M22]) /
determinant),
static_cast<float>((data_[M00] * data_[M22] - data_[M02] * data_[M20]) /
determinant),
static_cast<float>((data_[M02] * data_[M10] - data_[M00] * data_[M12]) /
determinant),
static_cast<float>((data_[M10] * data_[M21] - data_[M11] * data_[M20]) /
determinant),
static_cast<float>((data_[M01] * data_[M20] - data_[M00] * data_[M21]) /
determinant),
static_cast<float>((data_[M00] * data_[M11] - data_[M01] * data_[M10]) /
determinant));
return inverse;
}
float Matrix3F::Determinant() const {
return static_cast<float>(Determinant3x3(data_));
}
Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const {
// The matrix must be symmetric.
const float epsilon = std::numeric_limits<float>::epsilon();
if (std::abs(data_[M01] - data_[M10]) > epsilon ||
std::abs(data_[M02] - data_[M20]) > epsilon ||
std::abs(data_[M12] - data_[M21]) > epsilon) {
NOTREACHED();
return Vector3dF();
}
float eigenvalues[3];
float p =
data_[M01] * data_[M01] +
data_[M02] * data_[M02] +
data_[M12] * data_[M12];
bool diagonal = std::abs(p) < epsilon;
if (diagonal) {
eigenvalues[0] = data_[M00];
eigenvalues[1] = data_[M11];
eigenvalues[2] = data_[M22];
} else {
float q = Trace() / 3.0f;
p = (data_[M00] - q) * (data_[M00] - q) +
(data_[M11] - q) * (data_[M11] - q) +
(data_[M22] - q) * (data_[M22] - q) +
2 * p;
p = std::sqrt(p / 6);
// The computation below puts B as (A - qI) / p, where A is *this.
Matrix3F matrix_b(*this);
matrix_b.data_[M00] -= q;
matrix_b.data_[M11] -= q;
matrix_b.data_[M22] -= q;
for (int i = 0; i < M_END; ++i)
matrix_b.data_[i] /= p;
double half_det_b = Determinant3x3(matrix_b.data_) / 2.0;
// half_det_b should be in <-1, 1>, but beware of rounding error.
double phi = 0.0f;
if (half_det_b <= -1.0)
phi = M_PI / 3;
else if (half_det_b < 1.0)
phi = acos(half_det_b) / 3;
eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi));
eigenvalues[2] = q + 2 * p *
static_cast<float>(cos(phi + 2.0 * M_PI / 3.0));
eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2];
}
// Put eigenvalues in the descending order.
int indices[3] = {0, 1, 2};
if (eigenvalues[2] > eigenvalues[1]) {
std::swap(eigenvalues[2], eigenvalues[1]);
std::swap(indices[2], indices[1]);
}
if (eigenvalues[1] > eigenvalues[0]) {
std::swap(eigenvalues[1], eigenvalues[0]);
std::swap(indices[1], indices[0]);
}
if (eigenvalues[2] > eigenvalues[1]) {
std::swap(eigenvalues[2], eigenvalues[1]);
std::swap(indices[2], indices[1]);
}
if (eigenvectors != NULL && diagonal) {
// Eigenvectors are e-vectors, just need to be sorted accordingly.
*eigenvectors = Zeros();
for (int i = 0; i < 3; ++i)
eigenvectors->set(indices[i], i, 1.0f);
} else if (eigenvectors != NULL) {
// Consult the following for a detailed discussion:
// Joachim Kopp
// Numerical diagonalization of hermitian 3x3 matrices
// arXiv.org preprint: physics/0610206
// Int. J. Mod. Phys. C19 (2008) 523-548
// TODO(motek): expand to handle correctly negative and multiple
// eigenvalues.
for (int i = 0; i < 3; ++i) {
float l = eigenvalues[i];
// B = A - l * I
Matrix3F matrix_b(*this);
matrix_b.data_[M00] -= l;
matrix_b.data_[M11] -= l;
matrix_b.data_[M22] -= l;
Vector3dF e1 = CrossProduct(matrix_b.get_column(0),
matrix_b.get_column(1));
Vector3dF e2 = CrossProduct(matrix_b.get_column(1),
matrix_b.get_column(2));
Vector3dF e3 = CrossProduct(matrix_b.get_column(2),
matrix_b.get_column(0));
// e1, e2 and e3 should point in the same direction.
if (DotProduct(e1, e2) < 0)
e2 = -e2;
if (DotProduct(e1, e3) < 0)
e3 = -e3;
Vector3dF eigvec = e1 + e2 + e3;
// Normalize.
eigvec.Scale(1.0f / eigvec.Length());
eigenvectors->set_column(i, eigvec);
}
}
return Vector3dF(eigenvalues[0], eigenvalues[1], eigenvalues[2]);
}
} // namespace gfx
|