1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/r_tree_base.h"
#include <algorithm>
#include "base/logging.h"
// Helpers --------------------------------------------------------------------
namespace {
// Returns a Vector2d to allow us to do arithmetic on the result such as
// computing distances between centers.
gfx::Vector2d CenterOfRect(const gfx::Rect& rect) {
return rect.OffsetFromOrigin() +
gfx::Vector2d(rect.width() / 2, rect.height() / 2);
}
}
namespace gfx {
// RTreeBase::NodeBase --------------------------------------------------------
RTreeBase::NodeBase::~NodeBase() {
}
void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() {
RecomputeLocalBounds();
if (parent_)
parent_->RecomputeBoundsUpToRoot();
}
RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent)
: rect_(rect),
parent_(parent) {
}
void RTreeBase::NodeBase::RecomputeLocalBounds() {
}
// RTreeBase::RecordBase ------------------------------------------------------
RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {
}
RTreeBase::RecordBase::~RecordBase() {
}
void RTreeBase::RecordBase::AppendIntersectingRecords(
const Rect& query_rect, Records* matches_out) const {
if (rect().Intersects(query_rect))
matches_out->push_back(this);
}
void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const {
matches_out->push_back(this);
}
scoped_ptr<RTreeBase::NodeBase>
RTreeBase::RecordBase::RemoveAndReturnLastChild() {
return nullptr;
}
int RTreeBase::RecordBase::Level() const {
return -1;
}
// RTreeBase::Node ------------------------------------------------------------
RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {
}
RTreeBase::Node::~Node() {
}
scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() {
DCHECK(!parent());
scoped_ptr<Node> new_parent(new Node(level_ + 1));
new_parent->AddChild(scoped_ptr<NodeBase>(this));
return new_parent.Pass();
}
void RTreeBase::Node::AppendIntersectingRecords(
const Rect& query_rect, Records* matches_out) const {
// Check own bounding box for intersection, can cull all children if no
// intersection.
if (!rect().Intersects(query_rect))
return;
// Conversely if we are completely contained within the query rect we can
// confidently skip all bounds checks for ourselves and all our children.
if (query_rect.Contains(rect())) {
AppendAllRecords(matches_out);
return;
}
// We intersect the query rect but we are not are not contained within it.
// We must query each of our children in turn.
for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
(*i)->AppendIntersectingRecords(query_rect, matches_out);
}
void RTreeBase::Node::AppendAllRecords(Records* matches_out) const {
for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i)
(*i)->AppendAllRecords(matches_out);
}
void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove,
Nodes* nodes) {
DCHECK_LE(number_to_remove, children_.size());
std::partial_sort(children_.begin(),
children_.begin() + number_to_remove,
children_.end(),
&RTreeBase::Node::CompareCenterDistanceFromParent);
// Move the lowest-distance nodes to the returned vector.
nodes->insert(
nodes->end(), children_.begin(), children_.begin() + number_to_remove);
children_.weak_erase(children_.begin(), children_.begin() + number_to_remove);
}
scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild(
NodeBase* child_node, Nodes* orphans) {
DCHECK_EQ(this, child_node->parent());
scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild());
while (orphan) {
orphans->push_back(orphan.release());
orphan = child_node->RemoveAndReturnLastChild();
}
Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node);
DCHECK(i != children_.end());
children_.weak_erase(i);
return make_scoped_ptr(child_node);
}
scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() {
if (children_.empty())
return nullptr;
scoped_ptr<NodeBase> last_child(children_.back());
children_.weak_erase(children_.end() - 1);
last_child->set_parent(NULL);
return last_child.Pass();
}
RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) {
DCHECK(node);
// Should never be called on a node at equal or lower level in the tree than
// the node to insert.
DCHECK_GT(level_, node->Level());
// If we are a parent of nodes on the provided node level, we are done.
if (level_ == node->Level() + 1)
return this;
// Precompute a vector of expanded rects, used by both LeastOverlapIncrease
// and LeastAreaEnlargement.
Rects expanded_rects;
expanded_rects.reserve(children_.size());
for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i)
expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect()));
Node* best_candidate = NULL;
// For parents of leaf nodes, we pick the node that will cause the least
// increase in overlap by the addition of this new node. This may detect a
// tie, in which case it will return NULL.
if (level_ == 1)
best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects);
// For non-parents of leaf nodes, or for parents of leaf nodes with ties in
// overlap increase, we choose the subtree with least area enlargement caused
// by the addition of the new node.
if (!best_candidate)
best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects);
DCHECK(best_candidate);
return best_candidate->ChooseSubtree(node);
}
size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) {
DCHECK(node);
// Sanity-check that the level of the child being added is one less than ours.
DCHECK_EQ(level_ - 1, node->Level());
node->set_parent(this);
set_rect(UnionRects(rect(), node->rect()));
children_.push_back(node.release());
return children_.size();
}
scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children,
size_t max_children) {
// We should have too many children to begin with.
DCHECK_EQ(max_children + 1, children_.size());
// Determine if we should split along the horizontal or vertical axis.
std::vector<NodeBase*> vertical_sort(children_.get());
std::vector<NodeBase*> horizontal_sort(children_.get());
std::sort(vertical_sort.begin(),
vertical_sort.end(),
&RTreeBase::Node::CompareVertical);
std::sort(horizontal_sort.begin(),
horizontal_sort.end(),
&RTreeBase::Node::CompareHorizontal);
Rects low_vertical_bounds;
Rects low_horizontal_bounds;
BuildLowBounds(vertical_sort,
horizontal_sort,
&low_vertical_bounds,
&low_horizontal_bounds);
Rects high_vertical_bounds;
Rects high_horizontal_bounds;
BuildHighBounds(vertical_sort,
horizontal_sort,
&high_vertical_bounds,
&high_horizontal_bounds);
// Choose |end_index| such that both Nodes after the split will have
// min_children <= children_.size() <= max_children.
size_t end_index = std::min(max_children, children_.size() - min_children);
bool is_vertical_split =
SmallestMarginSum(min_children,
end_index,
low_horizontal_bounds,
high_horizontal_bounds) <
SmallestMarginSum(min_children,
end_index,
low_vertical_bounds,
high_vertical_bounds);
// Choose split index along chosen axis and perform the split.
const Rects& low_bounds(
is_vertical_split ? low_vertical_bounds : low_horizontal_bounds);
const Rects& high_bounds(
is_vertical_split ? high_vertical_bounds : high_horizontal_bounds);
size_t split_index =
ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds);
const std::vector<NodeBase*>& sort(
is_vertical_split ? vertical_sort : horizontal_sort);
return DivideChildren(low_bounds, high_bounds, sort, split_index);
}
int RTreeBase::Node::Level() const {
return level_;
}
RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {
}
// static
bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) {
const Rect& a_rect = a->rect();
const Rect& b_rect = b->rect();
return (a_rect.y() < b_rect.y()) ||
((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height()));
}
// static
bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) {
const Rect& a_rect = a->rect();
const Rect& b_rect = b->rect();
return (a_rect.x() < b_rect.x()) ||
((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width()));
}
// static
bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a,
const NodeBase* b) {
const NodeBase* p = a->parent();
DCHECK(p);
DCHECK_EQ(p, b->parent());
Vector2d p_center = CenterOfRect(p->rect());
Vector2d a_center = CenterOfRect(a->rect());
Vector2d b_center = CenterOfRect(b->rect());
// We don't bother with square roots because we are only comparing the two
// values for sorting purposes.
return (a_center - p_center).LengthSquared() <
(b_center - p_center).LengthSquared();
}
// static
void RTreeBase::Node::BuildLowBounds(
const std::vector<NodeBase*>& vertical_sort,
const std::vector<NodeBase*>& horizontal_sort,
Rects* vertical_bounds,
Rects* horizontal_bounds) {
Rect vertical_bounds_rect;
vertical_bounds->reserve(vertical_sort.size());
for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin();
i != vertical_sort.end();
++i) {
vertical_bounds_rect.Union((*i)->rect());
vertical_bounds->push_back(vertical_bounds_rect);
}
Rect horizontal_bounds_rect;
horizontal_bounds->reserve(horizontal_sort.size());
for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin();
i != horizontal_sort.end();
++i) {
horizontal_bounds_rect.Union((*i)->rect());
horizontal_bounds->push_back(horizontal_bounds_rect);
}
}
// static
void RTreeBase::Node::BuildHighBounds(
const std::vector<NodeBase*>& vertical_sort,
const std::vector<NodeBase*>& horizontal_sort,
Rects* vertical_bounds,
Rects* horizontal_bounds) {
Rect vertical_bounds_rect;
vertical_bounds->reserve(vertical_sort.size());
for (std::vector<NodeBase*>::const_reverse_iterator i =
vertical_sort.rbegin();
i != vertical_sort.rend();
++i) {
vertical_bounds_rect.Union((*i)->rect());
vertical_bounds->push_back(vertical_bounds_rect);
}
std::reverse(vertical_bounds->begin(), vertical_bounds->end());
Rect horizontal_bounds_rect;
horizontal_bounds->reserve(horizontal_sort.size());
for (std::vector<NodeBase*>::const_reverse_iterator i =
horizontal_sort.rbegin();
i != horizontal_sort.rend();
++i) {
horizontal_bounds_rect.Union((*i)->rect());
horizontal_bounds->push_back(horizontal_bounds_rect);
}
std::reverse(horizontal_bounds->begin(), horizontal_bounds->end());
}
size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index,
size_t end_index,
const Rects& low_bounds,
const Rects& high_bounds) {
DCHECK_EQ(low_bounds.size(), high_bounds.size());
int smallest_overlap_area = UnionRects(
low_bounds[start_index], high_bounds[start_index]).size().GetArea();
int smallest_combined_area = low_bounds[start_index].size().GetArea() +
high_bounds[start_index].size().GetArea();
size_t optimal_split_index = start_index;
for (size_t p = start_index + 1; p < end_index; ++p) {
const int overlap_area =
UnionRects(low_bounds[p], high_bounds[p]).size().GetArea();
const int combined_area =
low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea();
if ((overlap_area < smallest_overlap_area) ||
((overlap_area == smallest_overlap_area) &&
(combined_area < smallest_combined_area))) {
smallest_overlap_area = overlap_area;
smallest_combined_area = combined_area;
optimal_split_index = p;
}
}
// optimal_split_index currently points at the last element in the first set,
// so advance it by 1 to point at the first element in the second set.
return optimal_split_index + 1;
}
// static
int RTreeBase::Node::SmallestMarginSum(size_t start_index,
size_t end_index,
const Rects& low_bounds,
const Rects& high_bounds) {
DCHECK_EQ(low_bounds.size(), high_bounds.size());
DCHECK_LT(start_index, low_bounds.size());
DCHECK_LE(start_index, end_index);
DCHECK_LE(end_index, low_bounds.size());
Rects::const_iterator i(low_bounds.begin() + start_index);
Rects::const_iterator j(high_bounds.begin() + start_index);
int smallest_sum = i->width() + i->height() + j->width() + j->height();
for (; i != (low_bounds.begin() + end_index); ++i, ++j) {
smallest_sum = std::min(
smallest_sum, i->width() + i->height() + j->width() + j->height());
}
return smallest_sum;
}
void RTreeBase::Node::RecomputeLocalBounds() {
Rect bounds;
for (size_t i = 0; i < children_.size(); ++i)
bounds.Union(children_[i]->rect());
set_rect(bounds);
}
int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect,
const NodeBase* candidate_node,
const Rect& expanded_rect) const {
DCHECK(candidate_node);
// Early-out when |rect| is contained completely within |candidate|.
if (candidate_node->rect().Contains(rect))
return 0;
int total_original_overlap = 0;
int total_expanded_overlap = 0;
// Now calculate overlap with all other rects in this node.
for (Nodes::const_iterator it = children_.begin();
it != children_.end(); ++it) {
// Skip calculating overlap with the candidate rect.
if ((*it) == candidate_node)
continue;
NodeBase* overlap_node = (*it);
total_original_overlap += IntersectRects(
candidate_node->rect(), overlap_node->rect()).size().GetArea();
Rect expanded_overlap_rect = expanded_rect;
expanded_overlap_rect.Intersect(overlap_node->rect());
total_expanded_overlap += expanded_overlap_rect.size().GetArea();
}
return total_expanded_overlap - total_original_overlap;
}
scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren(
const Rects& low_bounds,
const Rects& high_bounds,
const std::vector<NodeBase*>& sorted_children,
size_t split_index) {
DCHECK_EQ(low_bounds.size(), high_bounds.size());
DCHECK_EQ(low_bounds.size(), sorted_children.size());
DCHECK_LT(split_index, low_bounds.size());
DCHECK_GT(split_index, 0U);
scoped_ptr<Node> sibling(new Node(level_));
sibling->set_parent(parent());
set_rect(low_bounds[split_index - 1]);
sibling->set_rect(high_bounds[split_index]);
// Our own children_ vector is unsorted, so we wipe it out and divide the
// sorted bounds rects between ourselves and our sibling.
children_.weak_clear();
children_.insert(children_.end(),
sorted_children.begin(),
sorted_children.begin() + split_index);
sibling->children_.insert(sibling->children_.end(),
sorted_children.begin() + split_index,
sorted_children.end());
for (size_t i = 0; i < sibling->children_.size(); ++i)
sibling->children_[i]->set_parent(sibling.get());
return sibling.Pass();
}
RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease(
const Rect& node_rect,
const Rects& expanded_rects) {
NodeBase* best_node = children_.front();
int least_overlap_increase =
OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]);
for (size_t i = 1; i < children_.size(); ++i) {
int overlap_increase =
OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]);
if (overlap_increase < least_overlap_increase) {
least_overlap_increase = overlap_increase;
best_node = children_[i];
} else if (overlap_increase == least_overlap_increase) {
// If we are tied at zero there is no possible better overlap increase,
// so we can report a tie early.
if (overlap_increase == 0)
return NULL;
best_node = NULL;
}
}
// Ensure that our children are always Nodes and not Records.
DCHECK_GE(level_, 1);
return static_cast<Node*>(best_node);
}
RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement(
const Rect& node_rect,
const Rects& expanded_rects) {
DCHECK(!children_.empty());
DCHECK_EQ(children_.size(), expanded_rects.size());
NodeBase* best_node = children_.front();
int least_area_enlargement =
expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea();
for (size_t i = 1; i < children_.size(); ++i) {
NodeBase* candidate_node = children_[i];
int area_change = expanded_rects[i].size().GetArea() -
candidate_node->rect().size().GetArea();
DCHECK_GE(area_change, 0);
if (area_change < least_area_enlargement) {
best_node = candidate_node;
least_area_enlargement = area_change;
} else if (area_change == least_area_enlargement &&
candidate_node->rect().size().GetArea() <
best_node->rect().size().GetArea()) {
// Ties are broken by choosing the entry with the least area.
best_node = candidate_node;
}
}
// Ensure that our children are always Nodes and not Records.
DCHECK_GE(level_, 1);
return static_cast<Node*>(best_node);
}
// RTreeBase ------------------------------------------------------------------
RTreeBase::RTreeBase(size_t min_children, size_t max_children)
: root_(new Node()),
min_children_(min_children),
max_children_(max_children) {
DCHECK_GE(min_children_, 2U);
DCHECK_LE(min_children_, max_children_ / 2U);
}
RTreeBase::~RTreeBase() {
}
void RTreeBase::InsertNode(
scoped_ptr<NodeBase> node, int* highest_reinsert_level) {
// Find the most appropriate parent to insert node into.
Node* parent = root_->ChooseSubtree(node.get());
DCHECK(parent);
// Verify ChooseSubtree returned a Node at the correct level.
DCHECK_EQ(parent->Level(), node->Level() + 1);
Node* insert_parent = static_cast<Node*>(parent);
NodeBase* needs_bounds_recomputed = insert_parent->parent();
Nodes reinserts;
// Attempt to insert the Node, if this overflows the Node we must handle it.
while (insert_parent &&
insert_parent->AddChild(node.Pass()) > max_children_) {
// If we have yet to re-insert nodes at this level during this data insert,
// and we're not at the root, R*-Tree calls for re-insertion of some of the
// nodes, resulting in a better balance on the tree.
if (insert_parent->parent() &&
insert_parent->Level() > *highest_reinsert_level) {
insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts);
// Adjust highest_reinsert_level to this level.
*highest_reinsert_level = insert_parent->Level();
// RemoveNodesForReinsert() does not recompute bounds, so mark it.
needs_bounds_recomputed = insert_parent;
break;
}
// Split() will create a sibling to insert_parent both of which will have
// valid bounds, but this invalidates their parent's bounds.
node = insert_parent->Split(min_children_, max_children_);
insert_parent = static_cast<Node*>(insert_parent->parent());
needs_bounds_recomputed = insert_parent;
}
// If we have a Node to insert, and we hit the root of the current tree,
// we create a new root which is the parent of the current root and the
// insert_node. Note that we must release() the |root_| since
// ConstructParent() will take ownership of it.
if (!insert_parent && node) {
root_ = root_.release()->ConstructParent();
root_->AddChild(node.Pass());
}
// Recompute bounds along insertion path.
if (needs_bounds_recomputed)
needs_bounds_recomputed->RecomputeBoundsUpToRoot();
// Complete re-inserts, if any. The algorithm only allows for one invocation
// of RemoveNodesForReinsert() per level of the tree in an overall call to
// Insert().
while (!reinserts.empty()) {
Nodes::iterator last_element = reinserts.end() - 1;
NodeBase* temp_ptr(*last_element);
reinserts.weak_erase(last_element);
InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level);
}
}
scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) {
// We need to remove this node from its parent.
Node* parent = static_cast<Node*>(node->parent());
// Record nodes are never allowed as the root, so we should always have a
// parent.
DCHECK(parent);
// Should always be a leaf that had the record.
DCHECK_EQ(0, parent->Level());
Nodes orphans;
scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans));
// It's possible that by removing |node| from |parent| we have made |parent|
// have less than the minimum number of children, in which case we will need
// to remove and delete |parent| while reinserting any other children that it
// had. We traverse up the tree doing this until we remove a child from a
// parent that still has greater than or equal to the minimum number of Nodes.
while (parent->count() < min_children_) {
NodeBase* child = parent;
parent = static_cast<Node*>(parent->parent());
// If we've hit the root, stop.
if (!parent)
break;
parent->RemoveChild(child, &orphans);
}
// If we stopped deleting nodes up the tree before encountering the root,
// we'll need to fix up the bounds from the first parent we didn't delete
// up to the root.
if (parent)
parent->RecomputeBoundsUpToRoot();
else
root_->RecomputeBoundsUpToRoot();
while (!orphans.empty()) {
Nodes::iterator last_element = orphans.end() - 1;
NodeBase* temp_ptr(*last_element);
orphans.weak_erase(last_element);
int starting_level = -1;
InsertNode(make_scoped_ptr(temp_ptr), &starting_level);
}
return removed_node.Pass();
}
void RTreeBase::PruneRootIfNecessary() {
if (root()->count() == 1 && root()->Level() > 0) {
// Awkward reset(cast(release)) pattern here because there's no better way
// to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase
// to Node.
root_.reset(
static_cast<Node*>(root_->RemoveAndReturnLastChild().release()));
}
}
void RTreeBase::ResetRoot() {
root_.reset(new Node());
}
} // namespace gfx
|