File: r_tree_unittest.cc

package info (click to toggle)
chromium-browser 41.0.2272.118-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 2,189,132 kB
  • sloc: cpp: 9,691,462; ansic: 3,341,451; python: 712,689; asm: 518,779; xml: 208,926; java: 169,820; sh: 119,353; perl: 68,907; makefile: 28,311; yacc: 13,305; objc: 11,385; tcl: 3,186; cs: 2,225; sql: 2,217; lex: 2,215; lisp: 1,349; pascal: 1,256; awk: 407; ruby: 155; sed: 53; php: 14; exp: 11
file content (1025 lines) | stat: -rw-r--r-- 36,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/r_tree.h"
#include "ui/gfx/geometry/r_tree_base.h"
#include "ui/gfx/geometry/rect.h"

namespace gfx {

class RTreeTest : public ::testing::Test {
 protected:
  typedef RTree<int> RT;

  // Given a pointer to an RTree, traverse it and verify that its internal
  // structure is consistent with RTree semantics.
  void ValidateRTree(RTreeBase* rt) {
    // If RTree is empty it should have an empty rectangle.
    if (!rt->root()->count()) {
      EXPECT_TRUE(rt->root()->rect().IsEmpty());
      EXPECT_EQ(0, rt->root()->Level());
      return;
    }
    // Root is allowed to have fewer than min_children_ but never more than
    // max_children_.
    EXPECT_LE(rt->root()->count(), rt->max_children_);
    // The root should never be a record node.
    EXPECT_GT(rt->root()->Level(), -1);
    // The root should never have a parent pointer.
    EXPECT_TRUE(rt->root()->parent() == NULL);
    // Bounds must be consistent on the root.
    CheckBoundsConsistent(rt->root());
    for (size_t i = 0; i < rt->root()->count(); ++i) {
      ValidateNode(
          rt->root()->child(i), rt->min_children_, rt->max_children_);
    }
  }

  // Recursive descent method used by ValidateRTree to check each node within
  // the RTree for consistency with RTree semantics.
  void ValidateNode(const RTreeBase::NodeBase* node_base,
                    size_t min_children,
                    size_t max_children) {
    if (node_base->Level() >= 0) {
      const RTreeBase::Node* node =
          static_cast<const RTreeBase::Node*>(node_base);
      EXPECT_GE(node->count(), min_children);
      EXPECT_LE(node->count(), max_children);
      CheckBoundsConsistent(node);
      for (size_t i = 0; i < node->count(); ++i)
        ValidateNode(node->child(i), min_children, max_children);
    }
  }

  // Check bounds are consistent with children bounds, and other checks
  // convenient to do while enumerating the children of node.
  void CheckBoundsConsistent(const RTreeBase::Node* node) {
    EXPECT_FALSE(node->rect().IsEmpty());
    Rect check_bounds;
    for (size_t i = 0; i < node->count(); ++i) {
      const RTreeBase::NodeBase* child_node = node->child(i);
      check_bounds.Union(child_node->rect());
      EXPECT_EQ(node->Level() - 1, child_node->Level());
      EXPECT_EQ(node, child_node->parent());
    }
    EXPECT_EQ(check_bounds, node->rect());
  }

  // Adds count squares stacked around the point (0,0) with key equal to width.
  void AddStackedSquares(RT* rt, int count) {
    for (int i = 1; i <= count; ++i) {
      rt->Insert(Rect(0, 0, i, i), i);
      ValidateRTree(static_cast<RTreeBase*>(rt));
    }
  }

  // Given an unordered list of matching keys, verifies that it contains all
  // values [1..length] for the length of that list.
  void VerifyAllKeys(const RT::Matches& keys) {
    for (size_t i = 1; i <= keys.size(); ++i)
      EXPECT_EQ(1U, keys.count(i));
  }

  // Given a node and a rectangle, builds an expanded rectangle list where the
  // ith element of the vector is the union of the rectangle of the ith child of
  // the node and the argument rectangle.
  void BuildExpandedRects(RTreeBase::Node* node,
                          const Rect& rect,
                          std::vector<Rect>* expanded_rects) {
    expanded_rects->clear();
    expanded_rects->reserve(node->count());
    for (size_t i = 0; i < node->count(); ++i) {
      Rect expanded_rect(rect);
      expanded_rect.Union(node->child(i)->rect());
      expanded_rects->push_back(expanded_rect);
    }
  }
};

class RTreeNodeTest : public RTreeTest {
 protected:
  typedef RTreeBase::NodeBase RTreeNodeBase;
  typedef RT::Record RTreeRecord;
  typedef RTreeBase::Node RTreeNode;
  typedef RTreeBase::Node::Rects RTreeRects;
  typedef RTreeBase::Nodes RTreeNodes;

  // Accessors to private members of RTree::Node.
  const RTreeRecord* record(RTreeNode* node, size_t i) {
    return static_cast<const RTreeRecord*>(node->child(i));
  }

  // Provides access for tests to private methods of RTree::Node.
  scoped_ptr<RTreeNode> NewNodeAtLevel(size_t level) {
    return make_scoped_ptr(new RTreeBase::Node(level));
  }

  void NodeRecomputeLocalBounds(RTreeNodeBase* node) {
    node->RecomputeLocalBounds();
  }

  bool NodeCompareVertical(RTreeNodeBase* a, RTreeNodeBase* b) {
    return RTreeBase::Node::CompareVertical(a, b);
  }

  bool NodeCompareHorizontal(RTreeNodeBase* a, RTreeNodeBase* b) {
    return RTreeBase::Node::CompareHorizontal(a, b);
  }

  bool NodeCompareCenterDistanceFromParent(
      const RTreeNodeBase* a, const RTreeNodeBase* b) {
    return RTreeBase::Node::CompareCenterDistanceFromParent(a, b);
  }

  int NodeOverlapIncreaseToAdd(RTreeNode* node,
                               const Rect& rect,
                               const RTreeNodeBase* candidate_node,
                               const Rect& expanded_rect) {
    return node->OverlapIncreaseToAdd(rect, candidate_node, expanded_rect);
  }

  void NodeBuildLowBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
                          const std::vector<RTreeNodeBase*>& horizontal_sort,
                          RTreeRects* vertical_bounds,
                          RTreeRects* horizontal_bounds) {
    RTreeBase::Node::BuildLowBounds(
        vertical_sort, horizontal_sort, vertical_bounds, horizontal_bounds);
  }

  void NodeBuildHighBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
                           const std::vector<RTreeNodeBase*>& horizontal_sort,
                           RTreeRects* vertical_bounds,
                           RTreeRects* horizontal_bounds) {
    RTreeBase::Node::BuildHighBounds(
        vertical_sort, horizontal_sort, vertical_bounds, horizontal_bounds);
  }

  int NodeSmallestMarginSum(size_t start_index,
                            size_t end_index,
                            const RTreeRects& low_bounds,
                            const RTreeRects& high_bounds) {
    return RTreeBase::Node::SmallestMarginSum(
        start_index, end_index, low_bounds, high_bounds);
  }

  size_t NodeChooseSplitIndex(size_t min_children,
                              size_t max_children,
                              const RTreeRects& low_bounds,
                              const RTreeRects& high_bounds) {
    return RTreeBase::Node::ChooseSplitIndex(
        min_children, max_children, low_bounds, high_bounds);
  }

  scoped_ptr<RTreeNodeBase> NodeDivideChildren(
      RTreeNode* node,
      const RTreeRects& low_bounds,
      const RTreeRects& high_bounds,
      const std::vector<RTreeNodeBase*>& sorted_children,
      size_t split_index) {
    return node->DivideChildren(
        low_bounds, high_bounds, sorted_children, split_index);
  }

  RTreeNode* NodeLeastOverlapIncrease(RTreeNode* node,
                                      const Rect& node_rect,
                                      const RTreeRects& expanded_rects) {
    return node->LeastOverlapIncrease(node_rect, expanded_rects);
  }

  RTreeNode* NodeLeastAreaEnlargement(RTreeNode* node,
                                      const Rect& node_rect,
                                      const RTreeRects& expanded_rects) {
    return node->LeastAreaEnlargement(node_rect, expanded_rects);
  }
};

// RTreeNodeTest --------------------------------------------------------------

TEST_F(RTreeNodeTest, RemoveNodesForReinsert) {
  // Make a leaf node for testing removal from.
  scoped_ptr<RTreeNode> test_node(new RTreeNode);
  // Build 20 record nodes with rectangle centers going from (1,1) to (20,20)
  for (int i = 1; i <= 20; ++i)
    test_node->AddChild(scoped_ptr<RTreeNodeBase>(
        new RTreeRecord(Rect(i - 1, i - 1, 2, 2), i)));

  // Quick verification of the node before removing children.
  ValidateNode(test_node.get(), 1U, 20U);
  // Use a scoped vector to delete all children that get removed from the Node.
  RTreeNodes removals;
  test_node->RemoveNodesForReinsert(1, &removals);
  // Should have gotten back 1 node pointer.
  EXPECT_EQ(1U, removals.size());
  // There should be 19 left in the test_node.
  EXPECT_EQ(19U, test_node->count());
  // If we fix up the bounds on the test_node, it should verify.
  NodeRecomputeLocalBounds(test_node.get());
  ValidateNode(test_node.get(), 2U, 20U);
  // The node we removed should be node 10, as it was exactly in the center.
  EXPECT_EQ(10, static_cast<RTreeRecord*>(removals[0])->key());

  // Now remove the next 2.
  removals.clear();
  test_node->RemoveNodesForReinsert(2, &removals);
  EXPECT_EQ(2U, removals.size());
  EXPECT_EQ(17U, test_node->count());
  NodeRecomputeLocalBounds(test_node.get());
  ValidateNode(test_node.get(), 2U, 20U);
  // Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their
  // centers were the closest to the center of the node bounding box.
  base::hash_set<intptr_t> results_hash;
  results_hash.insert(static_cast<RTreeRecord*>(removals[0])->key());
  results_hash.insert(static_cast<RTreeRecord*>(removals[1])->key());
  EXPECT_EQ(1U, results_hash.count(9));
  EXPECT_EQ(1U, results_hash.count(11));
}

TEST_F(RTreeNodeTest, CompareVertical) {
  // One rect with lower y than another should always sort lower.
  RTreeRecord low(Rect(0, 1, 10, 10), 1);
  RTreeRecord middle(Rect(0, 5, 10, 10), 5);
  EXPECT_TRUE(NodeCompareVertical(&low, &middle));
  EXPECT_FALSE(NodeCompareVertical(&middle, &low));

  // Try a non-overlapping higher-y rectangle.
  RTreeRecord high(Rect(-10, 20, 10, 1), 10);
  EXPECT_TRUE(NodeCompareVertical(&low, &high));
  EXPECT_FALSE(NodeCompareVertical(&high, &low));

  // Ties are broken by lowest bottom y value.
  RTreeRecord shorter_tie(Rect(10, 1, 100, 2), 2);
  EXPECT_TRUE(NodeCompareVertical(&shorter_tie, &low));
  EXPECT_FALSE(NodeCompareVertical(&low, &shorter_tie));
}

TEST_F(RTreeNodeTest, CompareHorizontal) {
  // One rect with lower x than another should always sort lower than higher x.
  RTreeRecord low(Rect(1, 0, 10, 10), 1);
  RTreeRecord middle(Rect(5, 0, 10, 10), 5);
  EXPECT_TRUE(NodeCompareHorizontal(&low, &middle));
  EXPECT_FALSE(NodeCompareHorizontal(&middle, &low));

  // Try a non-overlapping higher-x rectangle.
  RTreeRecord high(Rect(20, -10, 1, 10), 10);
  EXPECT_TRUE(NodeCompareHorizontal(&low, &high));
  EXPECT_FALSE(NodeCompareHorizontal(&high, &low));

  // Ties are broken by lowest bottom x value.
  RTreeRecord shorter_tie(Rect(1, 10, 2, 100), 2);
  EXPECT_TRUE(NodeCompareHorizontal(&shorter_tie, &low));
  EXPECT_FALSE(NodeCompareHorizontal(&low, &shorter_tie));
}

TEST_F(RTreeNodeTest, CompareCenterDistanceFromParent) {
  // Create a test node we can add children to, for distance comparisons.
  scoped_ptr<RTreeNode> parent(new RTreeNode);

  // Add three children, one each with centers at (0, 0), (10, 10), (-9, -9),
  // around which a bounding box will be centered at (0, 0)
  scoped_ptr<RTreeRecord> center_zero(new RTreeRecord(Rect(-1, -1, 2, 2), 1));
  parent->AddChild(center_zero.Pass());

  scoped_ptr<RTreeRecord> center_positive(new RTreeRecord(Rect(9, 9, 2, 2), 2));
  parent->AddChild(center_positive.Pass());

  scoped_ptr<RTreeRecord> center_negative(
      new RTreeRecord(Rect(-10, -10, 2, 2), 3));
  parent->AddChild(center_negative.Pass());

  ValidateNode(parent.get(), 1U, 5U);
  EXPECT_EQ(Rect(-10, -10, 21, 21), parent->rect());

  EXPECT_TRUE(
      NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(1)));
  EXPECT_FALSE(
      NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(0)));
  EXPECT_TRUE(
      NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(2)));
  EXPECT_FALSE(
      NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(0)));
  EXPECT_TRUE(
      NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(1)));
  EXPECT_FALSE(
      NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(2)));
}

TEST_F(RTreeNodeTest, OverlapIncreaseToAdd) {
  // Create a test node with three children, for overlap comparisons.
  scoped_ptr<RTreeNode> parent(new RTreeNode);

  // Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with
  // overlapping corners.
  Rect top(0, 0, 4, 4);
  parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(top, 1)));
  Rect middle(3, 3, 4, 4);
  parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(middle, 2)));
  Rect bottom(6, 6, 4, 4);
  parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(bottom, 3)));
  ValidateNode(parent.get(), 1U, 5U);

  // Test a rect in corner.
  Rect corner(0, 0, 1, 1);
  Rect expanded = top;
  expanded.Union(corner);
  // It should not add any overlap to add this to the first child at (0, 0).
  EXPECT_EQ(0, NodeOverlapIncreaseToAdd(
      parent.get(), corner, parent->child(0), expanded));

  expanded = middle;
  expanded.Union(corner);
  // Overlap for middle rectangle should increase from 2 pixels at (3, 3) and
  // (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top,
  // so a change of +15.
  EXPECT_EQ(15, NodeOverlapIncreaseToAdd(
      parent.get(), corner, parent->child(1), expanded));

  expanded = bottom;
  expanded.Union(corner);
  // Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to
  // 32 pixels, as it will now cover both 4x4 rectangles top and middle,
  // so a change of 31.
  EXPECT_EQ(31, NodeOverlapIncreaseToAdd(
      parent.get(), corner, parent->child(2), expanded));

  // Test a rect that doesn't overlap with anything, in the far right corner.
  Rect far_corner(9, 0, 1, 1);
  expanded = top;
  expanded.Union(far_corner);
  // Overlap of top should go from 1 to 4, as it will now cover the entire first
  // row of pixels in middle.
  EXPECT_EQ(3, NodeOverlapIncreaseToAdd(
      parent.get(), far_corner, parent->child(0), expanded));

  expanded = middle;
  expanded.Union(far_corner);
  // Overlap of middle should go from 2 to 8, as it will cover the rightmost 4
  // pixels of top and the top 4 pixels of bottom as it expands.
  EXPECT_EQ(6, NodeOverlapIncreaseToAdd(
      parent.get(), far_corner, parent->child(1), expanded));

  expanded = bottom;
  expanded.Union(far_corner);
  // Overlap of bottom should go from 1 to 4, as it will now cover the rightmost
  // 4 pixels of middle.
  EXPECT_EQ(3, NodeOverlapIncreaseToAdd(
      parent.get(), far_corner, parent->child(2), expanded));
}

TEST_F(RTreeNodeTest, BuildLowBounds) {
  RTreeNodes records;
  records.reserve(10);
  for (int i = 1; i <= 10; ++i)
    records.push_back(new RTreeRecord(Rect(0, 0, i, i), i));

  RTreeRects vertical_bounds;
  RTreeRects horizontal_bounds;
  NodeBuildLowBounds(
      records.get(), records.get(), &vertical_bounds, &horizontal_bounds);
  for (int i = 0; i < 10; ++i) {
    EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
    EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
  }
}

TEST_F(RTreeNodeTest, BuildHighBounds) {
  RTreeNodes records;
  records.reserve(25);
  for (int i = 0; i < 25; ++i)
    records.push_back(new RTreeRecord(Rect(i, i, 25 - i, 25 - i), i));

  RTreeRects vertical_bounds;
  RTreeRects horizontal_bounds;
  NodeBuildHighBounds(
      records.get(), records.get(), &vertical_bounds, &horizontal_bounds);
  for (int i = 0; i < 25; ++i) {
    EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
    EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
  }
}

TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexVertical) {
  RTreeRects low_vertical_bounds;
  RTreeRects high_vertical_bounds;
  RTreeRects low_horizontal_bounds;
  RTreeRects high_horizontal_bounds;
  // In this test scenario we describe a mirrored, stacked configuration of
  // horizontal, 1 pixel high rectangles labeled a-f like this:
  //
  // shape: | v sort: | h sort: |
  // -------+---------+---------+
  // aaaaa  |    0    |    0    |
  //  bbb   |    1    |    2    |
  //   c    |    2    |    4    |
  //   d    |    3    |    5    |
  //  eee   |    4    |    3    |
  // fffff  |    5    |    1    |
  //
  // These are already sorted vertically from top to bottom. Bounding rectangles
  // of these vertically sorted will be 5 wide, i tall bounding boxes.
  for (int i = 0; i < 6; ++i) {
    low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1));
    high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i));
  }

  // Low bounds of horizontal sort start with bounds of box a and then jump to
  // cover everything, as box f is second in horizontal sort.
  low_horizontal_bounds.push_back(Rect(0, 0, 5, 1));
  for (int i = 0; i < 5; ++i)
    low_horizontal_bounds.push_back(Rect(0, 0, 5, 6));

  // High horizontal bounds are hand-calculated.
  high_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
  high_horizontal_bounds.push_back(Rect(0, 1, 5, 5));
  high_horizontal_bounds.push_back(Rect(1, 1, 3, 4));
  high_horizontal_bounds.push_back(Rect(1, 2, 3, 3));
  high_horizontal_bounds.push_back(Rect(2, 2, 1, 2));
  high_horizontal_bounds.push_back(Rect(2, 3, 1, 1));

  int smallest_vertical_margin =
      NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
  int smallest_horizontal_margin = NodeSmallestMarginSum(
      2, 3, low_horizontal_bounds, high_horizontal_bounds);
  EXPECT_LT(smallest_vertical_margin, smallest_horizontal_margin);

  EXPECT_EQ(
      3U,
      NodeChooseSplitIndex(2, 5, low_vertical_bounds, high_vertical_bounds));
}

TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexHorizontal) {
  RTreeRects low_vertical_bounds;
  RTreeRects high_vertical_bounds;
  RTreeRects low_horizontal_bounds;
  RTreeRects high_horizontal_bounds;
  // We rotate the shape from ChooseSplitAxisAndIndexVertical to test
  // horizontal split axis detection:
  //
  //         +--------+
  //         | a    f |
  //         | ab  ef |
  // sort:   | abcdef |
  //         | ab  ef |
  //         | a    f |
  //         |--------+
  // v sort: | 024531 |
  // h sort: | 012345 |
  //         +--------+
  //
  // Low bounds of vertical sort start with bounds of box a and then jump to
  // cover everything, as box f is second in vertical sort.
  low_vertical_bounds.push_back(Rect(0, 0, 1, 5));
  for (int i = 0; i < 5; ++i)
    low_vertical_bounds.push_back(Rect(0, 0, 6, 5));

  // High vertical bounds are hand-calculated.
  high_vertical_bounds.push_back(Rect(0, 0, 6, 5));
  high_vertical_bounds.push_back(Rect(1, 0, 5, 5));
  high_vertical_bounds.push_back(Rect(1, 1, 4, 3));
  high_vertical_bounds.push_back(Rect(2, 1, 3, 3));
  high_vertical_bounds.push_back(Rect(2, 2, 2, 1));
  high_vertical_bounds.push_back(Rect(3, 2, 1, 1));

  // These are already sorted horizontally from left to right. Bounding
  // rectangles of these horizontally sorted will be i wide, 5 tall bounding
  // boxes.
  for (int i = 0; i < 6; ++i) {
    low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5));
    high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5));
  }

  int smallest_vertical_margin =
      NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
  int smallest_horizontal_margin = NodeSmallestMarginSum(
      2, 3, low_horizontal_bounds, high_horizontal_bounds);

  EXPECT_GT(smallest_vertical_margin, smallest_horizontal_margin);

  EXPECT_EQ(3U,
            NodeChooseSplitIndex(
                2, 5, low_horizontal_bounds, high_horizontal_bounds));
}

TEST_F(RTreeNodeTest, DivideChildren) {
  // Create a test node to split.
  scoped_ptr<RTreeNode> test_node(new RTreeNode);
  std::vector<RTreeNodeBase*> sorted_children;
  RTreeRects low_bounds;
  RTreeRects high_bounds;
  // Insert 10 record nodes, also inserting them into our children array.
  for (int i = 1; i <= 10; ++i) {
    scoped_ptr<RTreeRecord> record(new RTreeRecord(Rect(0, 0, i, i), i));
    sorted_children.push_back(record.get());
    test_node->AddChild(record.Pass());
    low_bounds.push_back(Rect(0, 0, i, i));
    high_bounds.push_back(Rect(0, 0, 10, 10));
  }
  // Split the children in half.
  scoped_ptr<RTreeNodeBase> split_node_base(NodeDivideChildren(
      test_node.get(), low_bounds, high_bounds, sorted_children, 5));
  RTreeNode* split_node = static_cast<RTreeNode*>(split_node_base.get());
  // Both nodes should be valid.
  ValidateNode(test_node.get(), 1U, 10U);
  ValidateNode(split_node, 1U, 10U);
  // Both nodes should have five children.
  EXPECT_EQ(5U, test_node->count());
  EXPECT_EQ(5U, split_node->count());
  // Test node should have children 1-5, split node should have children 6-10.
  for (int i = 0; i < 5; ++i) {
    EXPECT_EQ(i + 1, record(test_node.get(), i)->key());
    EXPECT_EQ(i + 6, record(split_node, i)->key());
  }
}

TEST_F(RTreeNodeTest, RemoveChildNoOrphans) {
  scoped_ptr<RTreeNode> test_parent(new RTreeNode);
  test_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
  test_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
  test_parent->AddChild(
    scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
  ValidateNode(test_parent.get(), 1U, 5U);

  RTreeNodes orphans;

  // Remove the middle node.
  scoped_ptr<RTreeNodeBase> middle_child(
      test_parent->RemoveChild(test_parent->child(1), &orphans));
  EXPECT_EQ(0U, orphans.size());
  EXPECT_EQ(2U, test_parent->count());
  NodeRecomputeLocalBounds(test_parent.get());
  ValidateNode(test_parent.get(), 1U, 5U);

  // Remove the end node.
  scoped_ptr<RTreeNodeBase> end_child(
      test_parent->RemoveChild(test_parent->child(1), &orphans));
  EXPECT_EQ(0U, orphans.size());
  EXPECT_EQ(1U, test_parent->count());
  NodeRecomputeLocalBounds(test_parent.get());
  ValidateNode(test_parent.get(), 1U, 5U);

  // Remove the first node.
  scoped_ptr<RTreeNodeBase> first_child(
      test_parent->RemoveChild(test_parent->child(0), &orphans));
  EXPECT_EQ(0U, orphans.size());
  EXPECT_EQ(0U, test_parent->count());
}

TEST_F(RTreeNodeTest, RemoveChildOrphans) {
  // Build binary tree of Nodes of height 4, keeping weak pointers to the
  // Levels 0 and 1 Nodes and the Records so we can test removal of them below.
  std::vector<RTreeNode*> level_1_children;
  std::vector<RTreeNode*> level_0_children;
  std::vector<RTreeRecord*> records;
  int id = 1;
  scoped_ptr<RTreeNode> root(NewNodeAtLevel(2));
  for (int i = 0; i < 2; ++i) {
    scoped_ptr<RTreeNode> level_1_child(NewNodeAtLevel(1));
    for (int j = 0; j < 2; ++j) {
      scoped_ptr<RTreeNode> level_0_child(new RTreeNode);
      for (int k = 0; k < 2; ++k) {
        scoped_ptr<RTreeRecord> record(
            new RTreeRecord(Rect(0, 0, id, id), id));
        ++id;
        records.push_back(record.get());
        level_0_child->AddChild(record.Pass());
      }
      level_0_children.push_back(level_0_child.get());
      level_1_child->AddChild(level_0_child.Pass());
    }
    level_1_children.push_back(level_1_child.get());
    root->AddChild(level_1_child.Pass());
  }

  // This should now be a valid tree structure.
  ValidateNode(root.get(), 2U, 2U);
  EXPECT_EQ(2U, level_1_children.size());
  EXPECT_EQ(4U, level_0_children.size());
  EXPECT_EQ(8U, records.size());

  // Now remove all of the level 0 nodes so we get the record nodes as orphans.
  RTreeNodes orphans;
  for (size_t i = 0; i < level_0_children.size(); ++i)
    level_1_children[i / 2]->RemoveChild(level_0_children[i], &orphans);

  // Orphans should be all 8 records but no order guarantee.
  EXPECT_EQ(8U, orphans.size());
  for (std::vector<RTreeRecord*>::iterator it = records.begin();
      it != records.end(); ++it) {
    RTreeNodes::iterator orphan =
        std::find(orphans.begin(), orphans.end(), *it);
    EXPECT_NE(orphan, orphans.end());
    orphans.erase(orphan);
  }
  EXPECT_EQ(0U, orphans.size());
}

TEST_F(RTreeNodeTest, RemoveAndReturnLastChild) {
  scoped_ptr<RTreeNode> test_parent(new RTreeNode);
  test_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
  test_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
  test_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
  ValidateNode(test_parent.get(), 1U, 5U);

  RTreeNodeBase* child = test_parent->child(2);
  scoped_ptr<RTreeNodeBase> last_child(test_parent->RemoveAndReturnLastChild());
  EXPECT_EQ(child, last_child.get());
  EXPECT_EQ(2U, test_parent->count());
  NodeRecomputeLocalBounds(test_parent.get());
  ValidateNode(test_parent.get(), 1U, 5U);

  child = test_parent->child(1);
  scoped_ptr<RTreeNodeBase> middle_child(
      test_parent->RemoveAndReturnLastChild());
  EXPECT_EQ(child, middle_child.get());
  EXPECT_EQ(1U, test_parent->count());
  NodeRecomputeLocalBounds(test_parent.get());
  ValidateNode(test_parent.get(), 1U, 5U);

  child = test_parent->child(0);
  scoped_ptr<RTreeNodeBase> first_child(
      test_parent->RemoveAndReturnLastChild());
  EXPECT_EQ(child, first_child.get());
  EXPECT_EQ(0U, test_parent->count());
}

TEST_F(RTreeNodeTest, LeastOverlapIncrease) {
  scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
  // Construct 4 nodes with 1x2 rects spaced horizontally 1 pixel apart, or:
  //
  // a b c d
  // a b c d
  //
  for (int i = 0; i < 4; ++i) {
    scoped_ptr<RTreeNode> node(new RTreeNode);
    scoped_ptr<RTreeRecord> record(
        new RTreeRecord(Rect(i * 2, 0, 1, 2), i + 1));
    node->AddChild(record.Pass());
    test_parent->AddChild(node.Pass());
  }

  ValidateNode(test_parent.get(), 1U, 5U);

  // Test rect at (7, 0) should require minimum overlap on the part of the
  // fourth rectangle to add:
  //
  // a b c dT
  // a b c d
  //
  Rect test_rect_far(7, 0, 1, 1);
  RTreeRects expanded_rects;
  BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects);
  RTreeNode* result = NodeLeastOverlapIncrease(
      test_parent.get(), test_rect_far, expanded_rects);
  EXPECT_EQ(4, record(result, 0)->key());

  // Test rect covering the bottom half of all children should be a 4-way tie,
  // so LeastOverlapIncrease should return NULL:
  //
  // a b c d
  // TTTTTTT
  //
  Rect test_rect_tie(0, 1, 7, 1);
  BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects);
  result = NodeLeastOverlapIncrease(
      test_parent.get(), test_rect_tie, expanded_rects);
  EXPECT_TRUE(result == NULL);

  // Test rect completely inside c should return the third rectangle:
  //
  // a b T d
  // a b c d
  //
  Rect test_rect_inside(4, 0, 1, 1);
  BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
  result = NodeLeastOverlapIncrease(
      test_parent.get(), test_rect_inside, expanded_rects);
  EXPECT_EQ(3, record(result, 0)->key());

  // Add a rectangle that overlaps completely with rectangle c, to test
  // when there is a tie between two completely contained rectangles:
  //
  // a b Ted
  // a b eed
  //
  scoped_ptr<RTreeNode> record_parent(new RTreeNode);
  record_parent->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(4, 0, 2, 2), 9)));
  test_parent->AddChild(record_parent.Pass());
  BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
  result = NodeLeastOverlapIncrease(
      test_parent.get(), test_rect_inside, expanded_rects);
  EXPECT_TRUE(result == NULL);
}

TEST_F(RTreeNodeTest, LeastAreaEnlargement) {
  scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
  // Construct 4 nodes in a cross-hairs style configuration:
  //
  //  a
  // b c
  //  d
  //
  scoped_ptr<RTreeNode> node(new RTreeNode);
  node->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 0, 1, 1), 1)));
  test_parent->AddChild(node.Pass());
  node.reset(new RTreeNode);
  node->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 1, 1), 2)));
  test_parent->AddChild(node.Pass());
  node.reset(new RTreeNode);
  node->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(2, 1, 1, 1), 3)));
  test_parent->AddChild(node.Pass());
  node.reset(new RTreeNode);
  node->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 2, 1, 1), 4)));
  test_parent->AddChild(node.Pass());

  ValidateNode(test_parent.get(), 1U, 5U);

  // Test rect at (1, 3) should require minimum area to add to Node d:
  //
  //  a
  // b c
  //  d
  //  T
  //
  Rect test_rect_below(1, 3, 1, 1);
  RTreeRects expanded_rects;
  BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects);
  RTreeNode* result = NodeLeastAreaEnlargement(
      test_parent.get(), test_rect_below, expanded_rects);
  EXPECT_EQ(4, record(result, 0)->key());

  // Test rect completely inside b should require minimum area to add to Node b:
  //
  //  a
  // T c
  //  d
  //
  Rect test_rect_inside(0, 1, 1, 1);
  BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
  result = NodeLeastAreaEnlargement(
      test_parent.get(), test_rect_inside, expanded_rects);
  EXPECT_EQ(2, record(result, 0)->key());

  // Add e at (0, 1) to overlap b and c, to test tie-breaking:
  //
  //  a
  // eee
  //  d
  //
  node.reset(new RTreeNode);
  node->AddChild(
      scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 3, 1), 7)));
  test_parent->AddChild(node.Pass());

  ValidateNode(test_parent.get(), 1U, 5U);

  // Test rect at (3, 1) should tie between c and e, but c has smaller area so
  // the algorithm should select c:
  //
  //
  //  a
  // eeeT
  //  d
  //
  Rect test_rect_tie_breaker(3, 1, 1, 1);
  BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects);
  result = NodeLeastAreaEnlargement(
      test_parent.get(), test_rect_tie_breaker, expanded_rects);
  EXPECT_EQ(3, record(result, 0)->key());
}

// RTreeTest ------------------------------------------------------------------

// An empty RTree should never return AppendIntersectingRecords results, and
// RTrees should be empty upon construction.
TEST_F(RTreeTest, AppendIntersectingRecordsOnEmptyTree) {
  RT rt(2, 10);
  ValidateRTree(&rt);
  RT::Matches results;
  Rect test_rect(25, 25);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(0U, results.size());
  ValidateRTree(&rt);
}

// Clear should empty the tree, meaning that all queries should not return
// results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) {
  RT rt(2, 5);
  rt.Insert(Rect(0, 0, 100, 100), 1);
  rt.Clear();
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(0U, results.size());
  ValidateRTree(&rt);
}

// Even with a complex internal structure, clear should empty the tree, meaning
// that all queries should not return results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) {
  RT rt(2, 5);
  AddStackedSquares(&rt, 100);
  rt.Clear();
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(0U, results.size());
  ValidateRTree(&rt);
}

// Duplicate inserts should overwrite previous inserts.
TEST_F(RTreeTest, DuplicateInsertsOverwrite) {
  RT rt(2, 5);
  // Add 100 stacked squares, but always with duplicate key of 0.
  for (int i = 1; i <= 100; ++i) {
    rt.Insert(Rect(0, 0, i, i), 0);
    ValidateRTree(&rt);
  }
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(1U, results.size());
  EXPECT_EQ(1U, results.count(0));
}

// Call Remove() once on something that's been inserted repeatedly.
TEST_F(RTreeTest, DuplicateInsertRemove) {
  RT rt(3, 9);
  AddStackedSquares(&rt, 25);
  for (int i = 1; i <= 100; ++i) {
    rt.Insert(Rect(0, 0, i, i), 26);
    ValidateRTree(&rt);
  }
  rt.Remove(26);
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(25U, results.size());
  VerifyAllKeys(results);
}

// Call Remove() repeatedly on something that's been inserted once.
TEST_F(RTreeTest, InsertDuplicateRemove) {
  RT rt(7, 15);
  AddStackedSquares(&rt, 101);
  for (int i = 0; i < 100; ++i) {
    rt.Remove(101);
    ValidateRTree(&rt);
  }
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(100U, results.size());
  VerifyAllKeys(results);
}

// Stacked rects should meet all matching queries regardless of nesting.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresNestedHit) {
  RT rt(2, 5);
  AddStackedSquares(&rt, 100);
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(100U, results.size());
  VerifyAllKeys(results);
}

// Stacked rects should meet all matching queries when contained completely by
// the query rectangle.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresContainedHit) {
  RT rt(2, 10);
  AddStackedSquares(&rt, 100);
  RT::Matches results;
  Rect test_rect(0, 0, 100, 100);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(100U, results.size());
  VerifyAllKeys(results);
}

// Stacked rects should miss a missing query when the query has no intersection
// with the rects.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresCompleteMiss) {
  RT rt(2, 7);
  AddStackedSquares(&rt, 100);
  RT::Matches results;
  Rect test_rect(150, 150, 100, 100);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(0U, results.size());
}

// Removing half the nodes after insertion should still result in a valid tree.
TEST_F(RTreeTest, RemoveHalfStackedRects) {
  RT rt(2, 11);
  AddStackedSquares(&rt, 200);
  for (int i = 101; i <= 200; ++i) {
    rt.Remove(i);
    ValidateRTree(&rt);
  }
  RT::Matches results;
  Rect test_rect(1, 1);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(100U, results.size());
  VerifyAllKeys(results);

  // Add the nodes back in.
  for (int i = 101; i <= 200; ++i) {
    rt.Insert(Rect(0, 0, i, i), i);
    ValidateRTree(&rt);
  }
  results.clear();
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(200U, results.size());
  VerifyAllKeys(results);
}

TEST_F(RTreeTest, InsertDupToRoot) {
  RT rt(2, 5);
  rt.Insert(Rect(0, 0, 1, 2), 1);
  ValidateRTree(&rt);
  rt.Insert(Rect(0, 0, 2, 1), 1);
  ValidateRTree(&rt);
}

TEST_F(RTreeTest, InsertNegativeCoordsRect) {
  RT rt(5, 11);
  for (int i = 1; i <= 100; ++i) {
    rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1);
    ValidateRTree(&rt);
    rt.Insert(Rect(0, 0, i, i), i * 2);
    ValidateRTree(&rt);
  }
  RT::Matches results;
  Rect test_rect(-1, -1, 2, 2);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(200U, results.size());
  VerifyAllKeys(results);
}

TEST_F(RTreeTest, RemoveNegativeCoordsRect) {
  RT rt(7, 21);

  // Add 100 positive stacked squares.
  AddStackedSquares(&rt, 100);

  // Now add 100 negative stacked squares.
  for (int i = 101; i <= 200; ++i) {
    rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i);
    ValidateRTree(&rt);
  }

  // Now remove half of the negative squares.
  for (int i = 101; i <= 150; ++i) {
    rt.Remove(301 - i);
    ValidateRTree(&rt);
  }

  // Queries should return 100 positive and 50 negative stacked squares.
  RT::Matches results;
  Rect test_rect(-1, -1, 2, 2);
  rt.AppendIntersectingRecords(test_rect, &results);
  EXPECT_EQ(150U, results.size());
  VerifyAllKeys(results);
}

TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) {
  RT rt(10, 31);
  AddStackedSquares(&rt, 50);
  ValidateRTree(&rt);

  // Replace last square with empty rect.
  rt.Insert(Rect(), 50);
  ValidateRTree(&rt);

  // Now query large area to get all rects in tree.
  RT::Matches results;
  Rect test_rect(0, 0, 100, 100);
  rt.AppendIntersectingRecords(test_rect, &results);

  // Should only be 49 rects in tree.
  EXPECT_EQ(49U, results.size());
  VerifyAllKeys(results);
}

TEST_F(RTreeTest, InsertReplacementMaintainsTree) {
  RT rt(2, 5);
  AddStackedSquares(&rt, 100);
  ValidateRTree(&rt);

  for (int i = 1; i <= 100; ++i) {
    rt.Insert(Rect(0, 0, 0, 0), i);
    ValidateRTree(&rt);
  }
}

}  // namespace gfx