1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/r_tree.h"
#include "ui/gfx/geometry/r_tree_base.h"
#include "ui/gfx/geometry/rect.h"
namespace gfx {
class RTreeTest : public ::testing::Test {
protected:
typedef RTree<int> RT;
// Given a pointer to an RTree, traverse it and verify that its internal
// structure is consistent with RTree semantics.
void ValidateRTree(RTreeBase* rt) {
// If RTree is empty it should have an empty rectangle.
if (!rt->root()->count()) {
EXPECT_TRUE(rt->root()->rect().IsEmpty());
EXPECT_EQ(0, rt->root()->Level());
return;
}
// Root is allowed to have fewer than min_children_ but never more than
// max_children_.
EXPECT_LE(rt->root()->count(), rt->max_children_);
// The root should never be a record node.
EXPECT_GT(rt->root()->Level(), -1);
// The root should never have a parent pointer.
EXPECT_TRUE(rt->root()->parent() == NULL);
// Bounds must be consistent on the root.
CheckBoundsConsistent(rt->root());
for (size_t i = 0; i < rt->root()->count(); ++i) {
ValidateNode(
rt->root()->child(i), rt->min_children_, rt->max_children_);
}
}
// Recursive descent method used by ValidateRTree to check each node within
// the RTree for consistency with RTree semantics.
void ValidateNode(const RTreeBase::NodeBase* node_base,
size_t min_children,
size_t max_children) {
if (node_base->Level() >= 0) {
const RTreeBase::Node* node =
static_cast<const RTreeBase::Node*>(node_base);
EXPECT_GE(node->count(), min_children);
EXPECT_LE(node->count(), max_children);
CheckBoundsConsistent(node);
for (size_t i = 0; i < node->count(); ++i)
ValidateNode(node->child(i), min_children, max_children);
}
}
// Check bounds are consistent with children bounds, and other checks
// convenient to do while enumerating the children of node.
void CheckBoundsConsistent(const RTreeBase::Node* node) {
EXPECT_FALSE(node->rect().IsEmpty());
Rect check_bounds;
for (size_t i = 0; i < node->count(); ++i) {
const RTreeBase::NodeBase* child_node = node->child(i);
check_bounds.Union(child_node->rect());
EXPECT_EQ(node->Level() - 1, child_node->Level());
EXPECT_EQ(node, child_node->parent());
}
EXPECT_EQ(check_bounds, node->rect());
}
// Adds count squares stacked around the point (0,0) with key equal to width.
void AddStackedSquares(RT* rt, int count) {
for (int i = 1; i <= count; ++i) {
rt->Insert(Rect(0, 0, i, i), i);
ValidateRTree(static_cast<RTreeBase*>(rt));
}
}
// Given an unordered list of matching keys, verifies that it contains all
// values [1..length] for the length of that list.
void VerifyAllKeys(const RT::Matches& keys) {
for (size_t i = 1; i <= keys.size(); ++i)
EXPECT_EQ(1U, keys.count(i));
}
// Given a node and a rectangle, builds an expanded rectangle list where the
// ith element of the vector is the union of the rectangle of the ith child of
// the node and the argument rectangle.
void BuildExpandedRects(RTreeBase::Node* node,
const Rect& rect,
std::vector<Rect>* expanded_rects) {
expanded_rects->clear();
expanded_rects->reserve(node->count());
for (size_t i = 0; i < node->count(); ++i) {
Rect expanded_rect(rect);
expanded_rect.Union(node->child(i)->rect());
expanded_rects->push_back(expanded_rect);
}
}
};
class RTreeNodeTest : public RTreeTest {
protected:
typedef RTreeBase::NodeBase RTreeNodeBase;
typedef RT::Record RTreeRecord;
typedef RTreeBase::Node RTreeNode;
typedef RTreeBase::Node::Rects RTreeRects;
typedef RTreeBase::Nodes RTreeNodes;
// Accessors to private members of RTree::Node.
const RTreeRecord* record(RTreeNode* node, size_t i) {
return static_cast<const RTreeRecord*>(node->child(i));
}
// Provides access for tests to private methods of RTree::Node.
scoped_ptr<RTreeNode> NewNodeAtLevel(size_t level) {
return make_scoped_ptr(new RTreeBase::Node(level));
}
void NodeRecomputeLocalBounds(RTreeNodeBase* node) {
node->RecomputeLocalBounds();
}
bool NodeCompareVertical(RTreeNodeBase* a, RTreeNodeBase* b) {
return RTreeBase::Node::CompareVertical(a, b);
}
bool NodeCompareHorizontal(RTreeNodeBase* a, RTreeNodeBase* b) {
return RTreeBase::Node::CompareHorizontal(a, b);
}
bool NodeCompareCenterDistanceFromParent(
const RTreeNodeBase* a, const RTreeNodeBase* b) {
return RTreeBase::Node::CompareCenterDistanceFromParent(a, b);
}
int NodeOverlapIncreaseToAdd(RTreeNode* node,
const Rect& rect,
const RTreeNodeBase* candidate_node,
const Rect& expanded_rect) {
return node->OverlapIncreaseToAdd(rect, candidate_node, expanded_rect);
}
void NodeBuildLowBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
const std::vector<RTreeNodeBase*>& horizontal_sort,
RTreeRects* vertical_bounds,
RTreeRects* horizontal_bounds) {
RTreeBase::Node::BuildLowBounds(
vertical_sort, horizontal_sort, vertical_bounds, horizontal_bounds);
}
void NodeBuildHighBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
const std::vector<RTreeNodeBase*>& horizontal_sort,
RTreeRects* vertical_bounds,
RTreeRects* horizontal_bounds) {
RTreeBase::Node::BuildHighBounds(
vertical_sort, horizontal_sort, vertical_bounds, horizontal_bounds);
}
int NodeSmallestMarginSum(size_t start_index,
size_t end_index,
const RTreeRects& low_bounds,
const RTreeRects& high_bounds) {
return RTreeBase::Node::SmallestMarginSum(
start_index, end_index, low_bounds, high_bounds);
}
size_t NodeChooseSplitIndex(size_t min_children,
size_t max_children,
const RTreeRects& low_bounds,
const RTreeRects& high_bounds) {
return RTreeBase::Node::ChooseSplitIndex(
min_children, max_children, low_bounds, high_bounds);
}
scoped_ptr<RTreeNodeBase> NodeDivideChildren(
RTreeNode* node,
const RTreeRects& low_bounds,
const RTreeRects& high_bounds,
const std::vector<RTreeNodeBase*>& sorted_children,
size_t split_index) {
return node->DivideChildren(
low_bounds, high_bounds, sorted_children, split_index);
}
RTreeNode* NodeLeastOverlapIncrease(RTreeNode* node,
const Rect& node_rect,
const RTreeRects& expanded_rects) {
return node->LeastOverlapIncrease(node_rect, expanded_rects);
}
RTreeNode* NodeLeastAreaEnlargement(RTreeNode* node,
const Rect& node_rect,
const RTreeRects& expanded_rects) {
return node->LeastAreaEnlargement(node_rect, expanded_rects);
}
};
// RTreeNodeTest --------------------------------------------------------------
TEST_F(RTreeNodeTest, RemoveNodesForReinsert) {
// Make a leaf node for testing removal from.
scoped_ptr<RTreeNode> test_node(new RTreeNode);
// Build 20 record nodes with rectangle centers going from (1,1) to (20,20)
for (int i = 1; i <= 20; ++i)
test_node->AddChild(scoped_ptr<RTreeNodeBase>(
new RTreeRecord(Rect(i - 1, i - 1, 2, 2), i)));
// Quick verification of the node before removing children.
ValidateNode(test_node.get(), 1U, 20U);
// Use a scoped vector to delete all children that get removed from the Node.
RTreeNodes removals;
test_node->RemoveNodesForReinsert(1, &removals);
// Should have gotten back 1 node pointer.
EXPECT_EQ(1U, removals.size());
// There should be 19 left in the test_node.
EXPECT_EQ(19U, test_node->count());
// If we fix up the bounds on the test_node, it should verify.
NodeRecomputeLocalBounds(test_node.get());
ValidateNode(test_node.get(), 2U, 20U);
// The node we removed should be node 10, as it was exactly in the center.
EXPECT_EQ(10, static_cast<RTreeRecord*>(removals[0])->key());
// Now remove the next 2.
removals.clear();
test_node->RemoveNodesForReinsert(2, &removals);
EXPECT_EQ(2U, removals.size());
EXPECT_EQ(17U, test_node->count());
NodeRecomputeLocalBounds(test_node.get());
ValidateNode(test_node.get(), 2U, 20U);
// Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their
// centers were the closest to the center of the node bounding box.
base::hash_set<intptr_t> results_hash;
results_hash.insert(static_cast<RTreeRecord*>(removals[0])->key());
results_hash.insert(static_cast<RTreeRecord*>(removals[1])->key());
EXPECT_EQ(1U, results_hash.count(9));
EXPECT_EQ(1U, results_hash.count(11));
}
TEST_F(RTreeNodeTest, CompareVertical) {
// One rect with lower y than another should always sort lower.
RTreeRecord low(Rect(0, 1, 10, 10), 1);
RTreeRecord middle(Rect(0, 5, 10, 10), 5);
EXPECT_TRUE(NodeCompareVertical(&low, &middle));
EXPECT_FALSE(NodeCompareVertical(&middle, &low));
// Try a non-overlapping higher-y rectangle.
RTreeRecord high(Rect(-10, 20, 10, 1), 10);
EXPECT_TRUE(NodeCompareVertical(&low, &high));
EXPECT_FALSE(NodeCompareVertical(&high, &low));
// Ties are broken by lowest bottom y value.
RTreeRecord shorter_tie(Rect(10, 1, 100, 2), 2);
EXPECT_TRUE(NodeCompareVertical(&shorter_tie, &low));
EXPECT_FALSE(NodeCompareVertical(&low, &shorter_tie));
}
TEST_F(RTreeNodeTest, CompareHorizontal) {
// One rect with lower x than another should always sort lower than higher x.
RTreeRecord low(Rect(1, 0, 10, 10), 1);
RTreeRecord middle(Rect(5, 0, 10, 10), 5);
EXPECT_TRUE(NodeCompareHorizontal(&low, &middle));
EXPECT_FALSE(NodeCompareHorizontal(&middle, &low));
// Try a non-overlapping higher-x rectangle.
RTreeRecord high(Rect(20, -10, 1, 10), 10);
EXPECT_TRUE(NodeCompareHorizontal(&low, &high));
EXPECT_FALSE(NodeCompareHorizontal(&high, &low));
// Ties are broken by lowest bottom x value.
RTreeRecord shorter_tie(Rect(1, 10, 2, 100), 2);
EXPECT_TRUE(NodeCompareHorizontal(&shorter_tie, &low));
EXPECT_FALSE(NodeCompareHorizontal(&low, &shorter_tie));
}
TEST_F(RTreeNodeTest, CompareCenterDistanceFromParent) {
// Create a test node we can add children to, for distance comparisons.
scoped_ptr<RTreeNode> parent(new RTreeNode);
// Add three children, one each with centers at (0, 0), (10, 10), (-9, -9),
// around which a bounding box will be centered at (0, 0)
scoped_ptr<RTreeRecord> center_zero(new RTreeRecord(Rect(-1, -1, 2, 2), 1));
parent->AddChild(center_zero.Pass());
scoped_ptr<RTreeRecord> center_positive(new RTreeRecord(Rect(9, 9, 2, 2), 2));
parent->AddChild(center_positive.Pass());
scoped_ptr<RTreeRecord> center_negative(
new RTreeRecord(Rect(-10, -10, 2, 2), 3));
parent->AddChild(center_negative.Pass());
ValidateNode(parent.get(), 1U, 5U);
EXPECT_EQ(Rect(-10, -10, 21, 21), parent->rect());
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(1)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(0)));
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(2)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(0)));
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(1)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(2)));
}
TEST_F(RTreeNodeTest, OverlapIncreaseToAdd) {
// Create a test node with three children, for overlap comparisons.
scoped_ptr<RTreeNode> parent(new RTreeNode);
// Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with
// overlapping corners.
Rect top(0, 0, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(top, 1)));
Rect middle(3, 3, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(middle, 2)));
Rect bottom(6, 6, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(bottom, 3)));
ValidateNode(parent.get(), 1U, 5U);
// Test a rect in corner.
Rect corner(0, 0, 1, 1);
Rect expanded = top;
expanded.Union(corner);
// It should not add any overlap to add this to the first child at (0, 0).
EXPECT_EQ(0, NodeOverlapIncreaseToAdd(
parent.get(), corner, parent->child(0), expanded));
expanded = middle;
expanded.Union(corner);
// Overlap for middle rectangle should increase from 2 pixels at (3, 3) and
// (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top,
// so a change of +15.
EXPECT_EQ(15, NodeOverlapIncreaseToAdd(
parent.get(), corner, parent->child(1), expanded));
expanded = bottom;
expanded.Union(corner);
// Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to
// 32 pixels, as it will now cover both 4x4 rectangles top and middle,
// so a change of 31.
EXPECT_EQ(31, NodeOverlapIncreaseToAdd(
parent.get(), corner, parent->child(2), expanded));
// Test a rect that doesn't overlap with anything, in the far right corner.
Rect far_corner(9, 0, 1, 1);
expanded = top;
expanded.Union(far_corner);
// Overlap of top should go from 1 to 4, as it will now cover the entire first
// row of pixels in middle.
EXPECT_EQ(3, NodeOverlapIncreaseToAdd(
parent.get(), far_corner, parent->child(0), expanded));
expanded = middle;
expanded.Union(far_corner);
// Overlap of middle should go from 2 to 8, as it will cover the rightmost 4
// pixels of top and the top 4 pixels of bottom as it expands.
EXPECT_EQ(6, NodeOverlapIncreaseToAdd(
parent.get(), far_corner, parent->child(1), expanded));
expanded = bottom;
expanded.Union(far_corner);
// Overlap of bottom should go from 1 to 4, as it will now cover the rightmost
// 4 pixels of middle.
EXPECT_EQ(3, NodeOverlapIncreaseToAdd(
parent.get(), far_corner, parent->child(2), expanded));
}
TEST_F(RTreeNodeTest, BuildLowBounds) {
RTreeNodes records;
records.reserve(10);
for (int i = 1; i <= 10; ++i)
records.push_back(new RTreeRecord(Rect(0, 0, i, i), i));
RTreeRects vertical_bounds;
RTreeRects horizontal_bounds;
NodeBuildLowBounds(
records.get(), records.get(), &vertical_bounds, &horizontal_bounds);
for (int i = 0; i < 10; ++i) {
EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
}
}
TEST_F(RTreeNodeTest, BuildHighBounds) {
RTreeNodes records;
records.reserve(25);
for (int i = 0; i < 25; ++i)
records.push_back(new RTreeRecord(Rect(i, i, 25 - i, 25 - i), i));
RTreeRects vertical_bounds;
RTreeRects horizontal_bounds;
NodeBuildHighBounds(
records.get(), records.get(), &vertical_bounds, &horizontal_bounds);
for (int i = 0; i < 25; ++i) {
EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
}
}
TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexVertical) {
RTreeRects low_vertical_bounds;
RTreeRects high_vertical_bounds;
RTreeRects low_horizontal_bounds;
RTreeRects high_horizontal_bounds;
// In this test scenario we describe a mirrored, stacked configuration of
// horizontal, 1 pixel high rectangles labeled a-f like this:
//
// shape: | v sort: | h sort: |
// -------+---------+---------+
// aaaaa | 0 | 0 |
// bbb | 1 | 2 |
// c | 2 | 4 |
// d | 3 | 5 |
// eee | 4 | 3 |
// fffff | 5 | 1 |
//
// These are already sorted vertically from top to bottom. Bounding rectangles
// of these vertically sorted will be 5 wide, i tall bounding boxes.
for (int i = 0; i < 6; ++i) {
low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1));
high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i));
}
// Low bounds of horizontal sort start with bounds of box a and then jump to
// cover everything, as box f is second in horizontal sort.
low_horizontal_bounds.push_back(Rect(0, 0, 5, 1));
for (int i = 0; i < 5; ++i)
low_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
// High horizontal bounds are hand-calculated.
high_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
high_horizontal_bounds.push_back(Rect(0, 1, 5, 5));
high_horizontal_bounds.push_back(Rect(1, 1, 3, 4));
high_horizontal_bounds.push_back(Rect(1, 2, 3, 3));
high_horizontal_bounds.push_back(Rect(2, 2, 1, 2));
high_horizontal_bounds.push_back(Rect(2, 3, 1, 1));
int smallest_vertical_margin =
NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
int smallest_horizontal_margin = NodeSmallestMarginSum(
2, 3, low_horizontal_bounds, high_horizontal_bounds);
EXPECT_LT(smallest_vertical_margin, smallest_horizontal_margin);
EXPECT_EQ(
3U,
NodeChooseSplitIndex(2, 5, low_vertical_bounds, high_vertical_bounds));
}
TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexHorizontal) {
RTreeRects low_vertical_bounds;
RTreeRects high_vertical_bounds;
RTreeRects low_horizontal_bounds;
RTreeRects high_horizontal_bounds;
// We rotate the shape from ChooseSplitAxisAndIndexVertical to test
// horizontal split axis detection:
//
// +--------+
// | a f |
// | ab ef |
// sort: | abcdef |
// | ab ef |
// | a f |
// |--------+
// v sort: | 024531 |
// h sort: | 012345 |
// +--------+
//
// Low bounds of vertical sort start with bounds of box a and then jump to
// cover everything, as box f is second in vertical sort.
low_vertical_bounds.push_back(Rect(0, 0, 1, 5));
for (int i = 0; i < 5; ++i)
low_vertical_bounds.push_back(Rect(0, 0, 6, 5));
// High vertical bounds are hand-calculated.
high_vertical_bounds.push_back(Rect(0, 0, 6, 5));
high_vertical_bounds.push_back(Rect(1, 0, 5, 5));
high_vertical_bounds.push_back(Rect(1, 1, 4, 3));
high_vertical_bounds.push_back(Rect(2, 1, 3, 3));
high_vertical_bounds.push_back(Rect(2, 2, 2, 1));
high_vertical_bounds.push_back(Rect(3, 2, 1, 1));
// These are already sorted horizontally from left to right. Bounding
// rectangles of these horizontally sorted will be i wide, 5 tall bounding
// boxes.
for (int i = 0; i < 6; ++i) {
low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5));
high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5));
}
int smallest_vertical_margin =
NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
int smallest_horizontal_margin = NodeSmallestMarginSum(
2, 3, low_horizontal_bounds, high_horizontal_bounds);
EXPECT_GT(smallest_vertical_margin, smallest_horizontal_margin);
EXPECT_EQ(3U,
NodeChooseSplitIndex(
2, 5, low_horizontal_bounds, high_horizontal_bounds));
}
TEST_F(RTreeNodeTest, DivideChildren) {
// Create a test node to split.
scoped_ptr<RTreeNode> test_node(new RTreeNode);
std::vector<RTreeNodeBase*> sorted_children;
RTreeRects low_bounds;
RTreeRects high_bounds;
// Insert 10 record nodes, also inserting them into our children array.
for (int i = 1; i <= 10; ++i) {
scoped_ptr<RTreeRecord> record(new RTreeRecord(Rect(0, 0, i, i), i));
sorted_children.push_back(record.get());
test_node->AddChild(record.Pass());
low_bounds.push_back(Rect(0, 0, i, i));
high_bounds.push_back(Rect(0, 0, 10, 10));
}
// Split the children in half.
scoped_ptr<RTreeNodeBase> split_node_base(NodeDivideChildren(
test_node.get(), low_bounds, high_bounds, sorted_children, 5));
RTreeNode* split_node = static_cast<RTreeNode*>(split_node_base.get());
// Both nodes should be valid.
ValidateNode(test_node.get(), 1U, 10U);
ValidateNode(split_node, 1U, 10U);
// Both nodes should have five children.
EXPECT_EQ(5U, test_node->count());
EXPECT_EQ(5U, split_node->count());
// Test node should have children 1-5, split node should have children 6-10.
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(i + 1, record(test_node.get(), i)->key());
EXPECT_EQ(i + 6, record(split_node, i)->key());
}
}
TEST_F(RTreeNodeTest, RemoveChildNoOrphans) {
scoped_ptr<RTreeNode> test_parent(new RTreeNode);
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
ValidateNode(test_parent.get(), 1U, 5U);
RTreeNodes orphans;
// Remove the middle node.
scoped_ptr<RTreeNodeBase> middle_child(
test_parent->RemoveChild(test_parent->child(1), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(2U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
// Remove the end node.
scoped_ptr<RTreeNodeBase> end_child(
test_parent->RemoveChild(test_parent->child(1), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(1U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
// Remove the first node.
scoped_ptr<RTreeNodeBase> first_child(
test_parent->RemoveChild(test_parent->child(0), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(0U, test_parent->count());
}
TEST_F(RTreeNodeTest, RemoveChildOrphans) {
// Build binary tree of Nodes of height 4, keeping weak pointers to the
// Levels 0 and 1 Nodes and the Records so we can test removal of them below.
std::vector<RTreeNode*> level_1_children;
std::vector<RTreeNode*> level_0_children;
std::vector<RTreeRecord*> records;
int id = 1;
scoped_ptr<RTreeNode> root(NewNodeAtLevel(2));
for (int i = 0; i < 2; ++i) {
scoped_ptr<RTreeNode> level_1_child(NewNodeAtLevel(1));
for (int j = 0; j < 2; ++j) {
scoped_ptr<RTreeNode> level_0_child(new RTreeNode);
for (int k = 0; k < 2; ++k) {
scoped_ptr<RTreeRecord> record(
new RTreeRecord(Rect(0, 0, id, id), id));
++id;
records.push_back(record.get());
level_0_child->AddChild(record.Pass());
}
level_0_children.push_back(level_0_child.get());
level_1_child->AddChild(level_0_child.Pass());
}
level_1_children.push_back(level_1_child.get());
root->AddChild(level_1_child.Pass());
}
// This should now be a valid tree structure.
ValidateNode(root.get(), 2U, 2U);
EXPECT_EQ(2U, level_1_children.size());
EXPECT_EQ(4U, level_0_children.size());
EXPECT_EQ(8U, records.size());
// Now remove all of the level 0 nodes so we get the record nodes as orphans.
RTreeNodes orphans;
for (size_t i = 0; i < level_0_children.size(); ++i)
level_1_children[i / 2]->RemoveChild(level_0_children[i], &orphans);
// Orphans should be all 8 records but no order guarantee.
EXPECT_EQ(8U, orphans.size());
for (std::vector<RTreeRecord*>::iterator it = records.begin();
it != records.end(); ++it) {
RTreeNodes::iterator orphan =
std::find(orphans.begin(), orphans.end(), *it);
EXPECT_NE(orphan, orphans.end());
orphans.erase(orphan);
}
EXPECT_EQ(0U, orphans.size());
}
TEST_F(RTreeNodeTest, RemoveAndReturnLastChild) {
scoped_ptr<RTreeNode> test_parent(new RTreeNode);
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
ValidateNode(test_parent.get(), 1U, 5U);
RTreeNodeBase* child = test_parent->child(2);
scoped_ptr<RTreeNodeBase> last_child(test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, last_child.get());
EXPECT_EQ(2U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
child = test_parent->child(1);
scoped_ptr<RTreeNodeBase> middle_child(
test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, middle_child.get());
EXPECT_EQ(1U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
child = test_parent->child(0);
scoped_ptr<RTreeNodeBase> first_child(
test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, first_child.get());
EXPECT_EQ(0U, test_parent->count());
}
TEST_F(RTreeNodeTest, LeastOverlapIncrease) {
scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
// Construct 4 nodes with 1x2 rects spaced horizontally 1 pixel apart, or:
//
// a b c d
// a b c d
//
for (int i = 0; i < 4; ++i) {
scoped_ptr<RTreeNode> node(new RTreeNode);
scoped_ptr<RTreeRecord> record(
new RTreeRecord(Rect(i * 2, 0, 1, 2), i + 1));
node->AddChild(record.Pass());
test_parent->AddChild(node.Pass());
}
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (7, 0) should require minimum overlap on the part of the
// fourth rectangle to add:
//
// a b c dT
// a b c d
//
Rect test_rect_far(7, 0, 1, 1);
RTreeRects expanded_rects;
BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects);
RTreeNode* result = NodeLeastOverlapIncrease(
test_parent.get(), test_rect_far, expanded_rects);
EXPECT_EQ(4, record(result, 0)->key());
// Test rect covering the bottom half of all children should be a 4-way tie,
// so LeastOverlapIncrease should return NULL:
//
// a b c d
// TTTTTTT
//
Rect test_rect_tie(0, 1, 7, 1);
BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects);
result = NodeLeastOverlapIncrease(
test_parent.get(), test_rect_tie, expanded_rects);
EXPECT_TRUE(result == NULL);
// Test rect completely inside c should return the third rectangle:
//
// a b T d
// a b c d
//
Rect test_rect_inside(4, 0, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastOverlapIncrease(
test_parent.get(), test_rect_inside, expanded_rects);
EXPECT_EQ(3, record(result, 0)->key());
// Add a rectangle that overlaps completely with rectangle c, to test
// when there is a tie between two completely contained rectangles:
//
// a b Ted
// a b eed
//
scoped_ptr<RTreeNode> record_parent(new RTreeNode);
record_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(4, 0, 2, 2), 9)));
test_parent->AddChild(record_parent.Pass());
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastOverlapIncrease(
test_parent.get(), test_rect_inside, expanded_rects);
EXPECT_TRUE(result == NULL);
}
TEST_F(RTreeNodeTest, LeastAreaEnlargement) {
scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
// Construct 4 nodes in a cross-hairs style configuration:
//
// a
// b c
// d
//
scoped_ptr<RTreeNode> node(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 0, 1, 1), 1)));
test_parent->AddChild(node.Pass());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 1, 1), 2)));
test_parent->AddChild(node.Pass());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(2, 1, 1, 1), 3)));
test_parent->AddChild(node.Pass());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 2, 1, 1), 4)));
test_parent->AddChild(node.Pass());
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (1, 3) should require minimum area to add to Node d:
//
// a
// b c
// d
// T
//
Rect test_rect_below(1, 3, 1, 1);
RTreeRects expanded_rects;
BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects);
RTreeNode* result = NodeLeastAreaEnlargement(
test_parent.get(), test_rect_below, expanded_rects);
EXPECT_EQ(4, record(result, 0)->key());
// Test rect completely inside b should require minimum area to add to Node b:
//
// a
// T c
// d
//
Rect test_rect_inside(0, 1, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastAreaEnlargement(
test_parent.get(), test_rect_inside, expanded_rects);
EXPECT_EQ(2, record(result, 0)->key());
// Add e at (0, 1) to overlap b and c, to test tie-breaking:
//
// a
// eee
// d
//
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 3, 1), 7)));
test_parent->AddChild(node.Pass());
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (3, 1) should tie between c and e, but c has smaller area so
// the algorithm should select c:
//
//
// a
// eeeT
// d
//
Rect test_rect_tie_breaker(3, 1, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects);
result = NodeLeastAreaEnlargement(
test_parent.get(), test_rect_tie_breaker, expanded_rects);
EXPECT_EQ(3, record(result, 0)->key());
}
// RTreeTest ------------------------------------------------------------------
// An empty RTree should never return AppendIntersectingRecords results, and
// RTrees should be empty upon construction.
TEST_F(RTreeTest, AppendIntersectingRecordsOnEmptyTree) {
RT rt(2, 10);
ValidateRTree(&rt);
RT::Matches results;
Rect test_rect(25, 25);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Clear should empty the tree, meaning that all queries should not return
// results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) {
RT rt(2, 5);
rt.Insert(Rect(0, 0, 100, 100), 1);
rt.Clear();
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Even with a complex internal structure, clear should empty the tree, meaning
// that all queries should not return results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
rt.Clear();
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Duplicate inserts should overwrite previous inserts.
TEST_F(RTreeTest, DuplicateInsertsOverwrite) {
RT rt(2, 5);
// Add 100 stacked squares, but always with duplicate key of 0.
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, i, i), 0);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(1U, results.size());
EXPECT_EQ(1U, results.count(0));
}
// Call Remove() once on something that's been inserted repeatedly.
TEST_F(RTreeTest, DuplicateInsertRemove) {
RT rt(3, 9);
AddStackedSquares(&rt, 25);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, i, i), 26);
ValidateRTree(&rt);
}
rt.Remove(26);
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(25U, results.size());
VerifyAllKeys(results);
}
// Call Remove() repeatedly on something that's been inserted once.
TEST_F(RTreeTest, InsertDuplicateRemove) {
RT rt(7, 15);
AddStackedSquares(&rt, 101);
for (int i = 0; i < 100; ++i) {
rt.Remove(101);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should meet all matching queries regardless of nesting.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresNestedHit) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should meet all matching queries when contained completely by
// the query rectangle.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresContainedHit) {
RT rt(2, 10);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(0, 0, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should miss a missing query when the query has no intersection
// with the rects.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresCompleteMiss) {
RT rt(2, 7);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(150, 150, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
}
// Removing half the nodes after insertion should still result in a valid tree.
TEST_F(RTreeTest, RemoveHalfStackedRects) {
RT rt(2, 11);
AddStackedSquares(&rt, 200);
for (int i = 101; i <= 200; ++i) {
rt.Remove(i);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
// Add the nodes back in.
for (int i = 101; i <= 200; ++i) {
rt.Insert(Rect(0, 0, i, i), i);
ValidateRTree(&rt);
}
results.clear();
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(200U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertDupToRoot) {
RT rt(2, 5);
rt.Insert(Rect(0, 0, 1, 2), 1);
ValidateRTree(&rt);
rt.Insert(Rect(0, 0, 2, 1), 1);
ValidateRTree(&rt);
}
TEST_F(RTreeTest, InsertNegativeCoordsRect) {
RT rt(5, 11);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1);
ValidateRTree(&rt);
rt.Insert(Rect(0, 0, i, i), i * 2);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(-1, -1, 2, 2);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(200U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, RemoveNegativeCoordsRect) {
RT rt(7, 21);
// Add 100 positive stacked squares.
AddStackedSquares(&rt, 100);
// Now add 100 negative stacked squares.
for (int i = 101; i <= 200; ++i) {
rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i);
ValidateRTree(&rt);
}
// Now remove half of the negative squares.
for (int i = 101; i <= 150; ++i) {
rt.Remove(301 - i);
ValidateRTree(&rt);
}
// Queries should return 100 positive and 50 negative stacked squares.
RT::Matches results;
Rect test_rect(-1, -1, 2, 2);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(150U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) {
RT rt(10, 31);
AddStackedSquares(&rt, 50);
ValidateRTree(&rt);
// Replace last square with empty rect.
rt.Insert(Rect(), 50);
ValidateRTree(&rt);
// Now query large area to get all rects in tree.
RT::Matches results;
Rect test_rect(0, 0, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
// Should only be 49 rects in tree.
EXPECT_EQ(49U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertReplacementMaintainsTree) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
ValidateRTree(&rt);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, 0, 0), i);
ValidateRTree(&rt);
}
}
} // namespace gfx
|