1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defines a simple integer rectangle class. The containment semantics
// are array-like; that is, the coordinate (x, y) is considered to be
// contained by the rectangle, but the coordinate (x + width, y) is not.
// The class will happily let you create malformed rectangles (that is,
// rectangles with negative width and/or height), but there will be assertions
// in the operations (such as Contains()) to complain in this case.
#ifndef UI_GFX_GEOMETRY_RECT_H_
#define UI_GFX_GEOMETRY_RECT_H_
#include <cmath>
#include <iosfwd>
#include <string>
#include "base/numerics/safe_conversions.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d.h"
#if defined(OS_WIN)
typedef struct tagRECT RECT;
#elif defined(OS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif defined(OS_MACOSX)
#include <ApplicationServices/ApplicationServices.h>
#endif
namespace gfx {
class Insets;
class GFX_EXPORT Rect {
public:
Rect() {}
Rect(int width, int height) : size_(width, height) {}
Rect(int x, int y, int width, int height)
: origin_(x, y), size_(width, height) {}
explicit Rect(const Size& size) : size_(size) {}
Rect(const Point& origin, const Size& size) : origin_(origin), size_(size) {}
#if defined(OS_WIN)
explicit Rect(const RECT& r);
#elif defined(OS_MACOSX)
explicit Rect(const CGRect& r);
#endif
~Rect() {}
#if defined(OS_WIN)
// Construct an equivalent Win32 RECT object.
RECT ToRECT() const;
#elif defined(OS_MACOSX)
// Construct an equivalent CoreGraphics object.
CGRect ToCGRect() const;
#endif
operator RectF() const {
return RectF(static_cast<float>(x()), static_cast<float>(y()),
static_cast<float>(width()), static_cast<float>(height()));
}
int x() const { return origin_.x(); }
void set_x(int x) { origin_.set_x(x); }
int y() const { return origin_.y(); }
void set_y(int y) { origin_.set_y(y); }
int width() const { return size_.width(); }
void set_width(int width) { size_.set_width(width); }
int height() const { return size_.height(); }
void set_height(int height) { size_.set_height(height); }
const Point& origin() const { return origin_; }
void set_origin(const Point& origin) { origin_ = origin; }
const Size& size() const { return size_; }
void set_size(const Size& size) { size_ = size; }
int right() const { return x() + width(); }
int bottom() const { return y() + height(); }
Point top_right() const { return Point(right(), y()); }
Point bottom_left() const { return Point(x(), bottom()); }
Point bottom_right() const { return Point(right(), bottom()); }
Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); }
void SetRect(int x, int y, int width, int height) {
origin_.SetPoint(x, y);
size_.SetSize(width, height);
}
// Shrink the rectangle by a horizontal and vertical distance on all sides.
void Inset(int horizontal, int vertical) {
Inset(horizontal, vertical, horizontal, vertical);
}
// Shrink the rectangle by the given insets.
void Inset(const Insets& insets);
// Shrink the rectangle by the specified amount on each side.
void Inset(int left, int top, int right, int bottom);
// Move the rectangle by a horizontal and vertical distance.
void Offset(int horizontal, int vertical);
void Offset(const Vector2d& distance) { Offset(distance.x(), distance.y()); }
void operator+=(const Vector2d& offset);
void operator-=(const Vector2d& offset);
Insets InsetsFrom(const Rect& inner) const;
// Returns true if the area of the rectangle is zero.
bool IsEmpty() const { return size_.IsEmpty(); }
// A rect is less than another rect if its origin is less than
// the other rect's origin. If the origins are equal, then the
// shortest rect is less than the other. If the origin and the
// height are equal, then the narrowest rect is less than.
// This comparison is required to use Rects in sets, or sorted
// vectors.
bool operator<(const Rect& other) const;
// Returns true if the point identified by point_x and point_y falls inside
// this rectangle. The point (x, y) is inside the rectangle, but the
// point (x + width, y + height) is not.
bool Contains(int point_x, int point_y) const;
// Returns true if the specified point is contained by this rectangle.
bool Contains(const Point& point) const {
return Contains(point.x(), point.y());
}
// Returns true if this rectangle contains the specified rectangle.
bool Contains(const Rect& rect) const;
// Returns true if this rectangle intersects the specified rectangle.
// An empty rectangle doesn't intersect any rectangle.
bool Intersects(const Rect& rect) const;
// Computes the intersection of this rectangle with the given rectangle.
void Intersect(const Rect& rect);
// Computes the union of this rectangle with the given rectangle. The union
// is the smallest rectangle containing both rectangles.
void Union(const Rect& rect);
// Computes the rectangle resulting from subtracting |rect| from |*this|,
// i.e. the bounding rect of |Region(*this) - Region(rect)|.
void Subtract(const Rect& rect);
// Fits as much of the receiving rectangle into the supplied rectangle as
// possible, becoming the result. For example, if the receiver had
// a x-location of 2 and a width of 4, and the supplied rectangle had
// an x-location of 0 with a width of 5, the returned rectangle would have
// an x-location of 1 with a width of 4.
void AdjustToFit(const Rect& rect);
// Returns the center of this rectangle.
Point CenterPoint() const;
// Becomes a rectangle that has the same center point but with a size capped
// at given |size|.
void ClampToCenteredSize(const Size& size);
// Splits |this| in two halves, |left_half| and |right_half|.
void SplitVertically(Rect* left_half, Rect* right_half) const;
// Returns true if this rectangle shares an entire edge (i.e., same width or
// same height) with the given rectangle, and the rectangles do not overlap.
bool SharesEdgeWith(const Rect& rect) const;
// Returns the manhattan distance from the rect to the point. If the point is
// inside the rect, returns 0.
int ManhattanDistanceToPoint(const Point& point) const;
// Returns the manhattan distance between the contents of this rect and the
// contents of the given rect. That is, if the intersection of the two rects
// is non-empty then the function returns 0. If the rects share a side, it
// returns the smallest non-zero value appropriate for int.
int ManhattanInternalDistance(const Rect& rect) const;
std::string ToString() const;
private:
gfx::Point origin_;
gfx::Size size_;
};
inline bool operator==(const Rect& lhs, const Rect& rhs) {
return lhs.origin() == rhs.origin() && lhs.size() == rhs.size();
}
inline bool operator!=(const Rect& lhs, const Rect& rhs) {
return !(lhs == rhs);
}
GFX_EXPORT Rect operator+(const Rect& lhs, const Vector2d& rhs);
GFX_EXPORT Rect operator-(const Rect& lhs, const Vector2d& rhs);
inline Rect operator+(const Vector2d& lhs, const Rect& rhs) {
return rhs + lhs;
}
GFX_EXPORT Rect IntersectRects(const Rect& a, const Rect& b);
GFX_EXPORT Rect UnionRects(const Rect& a, const Rect& b);
GFX_EXPORT Rect SubtractRects(const Rect& a, const Rect& b);
// Constructs a rectangle with |p1| and |p2| as opposite corners.
//
// This could also be thought of as "the smallest rect that contains both
// points", except that we consider points on the right/bottom edges of the
// rect to be outside the rect. So technically one or both points will not be
// contained within the rect, because they will appear on one of these edges.
GFX_EXPORT Rect BoundingRect(const Point& p1, const Point& p2);
inline Rect ScaleToEnclosingRect(const Rect& rect,
float x_scale,
float y_scale) {
// These next functions cast instead of using e.g. ToFlooredInt() because we
// haven't checked to ensure that the clamping behavior of the helper
// functions doesn't degrade performance, and callers shouldn't be passing
// values that cause overflow anyway.
DCHECK(base::IsValueInRangeForNumericType<int>(
std::floor(rect.x() * x_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::floor(rect.y() * y_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::ceil(rect.right() * x_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::ceil(rect.bottom() * y_scale)));
int x = static_cast<int>(std::floor(rect.x() * x_scale));
int y = static_cast<int>(std::floor(rect.y() * y_scale));
int r = rect.width() == 0 ?
x : static_cast<int>(std::ceil(rect.right() * x_scale));
int b = rect.height() == 0 ?
y : static_cast<int>(std::ceil(rect.bottom() * y_scale));
return Rect(x, y, r - x, b - y);
}
inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) {
return ScaleToEnclosingRect(rect, scale, scale);
}
inline Rect ScaleToEnclosedRect(const Rect& rect,
float x_scale,
float y_scale) {
DCHECK(base::IsValueInRangeForNumericType<int>(
std::ceil(rect.x() * x_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::ceil(rect.y() * y_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::floor(rect.right() * x_scale)));
DCHECK(base::IsValueInRangeForNumericType<int>(
std::floor(rect.bottom() * y_scale)));
int x = static_cast<int>(std::ceil(rect.x() * x_scale));
int y = static_cast<int>(std::ceil(rect.y() * y_scale));
int r = rect.width() == 0 ?
x : static_cast<int>(std::floor(rect.right() * x_scale));
int b = rect.height() == 0 ?
y : static_cast<int>(std::floor(rect.bottom() * y_scale));
return Rect(x, y, r - x, b - y);
}
inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) {
return ScaleToEnclosedRect(rect, scale, scale);
}
// This is declared here for use in gtest-based unit tests but is defined in
// the gfx_test_support target. Depend on that to use this in your unit test.
// This should not be used in production code - call ToString() instead.
void PrintTo(const Rect& rect, ::std::ostream* os);
} // namespace gfx
#endif // UI_GFX_GEOMETRY_RECT_H_
|