1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "ui/gfx/transform.h"
#include <cmath>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/vector3d_f.h"
#include "ui/gfx/skia_util.h"
#include "ui/gfx/transform_util.h"
namespace gfx {
namespace {
// Taken from SkMatrix44.
const SkMScalar kEpsilon = 1e-8f;
SkMScalar TanDegrees(double degrees) {
double radians = degrees * M_PI / 180;
return SkDoubleToMScalar(std::tan(radians));
}
inline bool ApproximatelyZero(SkMScalar x, SkMScalar tolerance) {
return std::abs(x) <= tolerance;
}
inline bool ApproximatelyOne(SkMScalar x, SkMScalar tolerance) {
return std::abs(x - SkDoubleToMScalar(1.0)) <= tolerance;
}
} // namespace
Transform::Transform(SkMScalar col1row1,
SkMScalar col2row1,
SkMScalar col3row1,
SkMScalar col4row1,
SkMScalar col1row2,
SkMScalar col2row2,
SkMScalar col3row2,
SkMScalar col4row2,
SkMScalar col1row3,
SkMScalar col2row3,
SkMScalar col3row3,
SkMScalar col4row3,
SkMScalar col1row4,
SkMScalar col2row4,
SkMScalar col3row4,
SkMScalar col4row4)
: matrix_(SkMatrix44::kUninitialized_Constructor) {
matrix_.set(0, 0, col1row1);
matrix_.set(1, 0, col1row2);
matrix_.set(2, 0, col1row3);
matrix_.set(3, 0, col1row4);
matrix_.set(0, 1, col2row1);
matrix_.set(1, 1, col2row2);
matrix_.set(2, 1, col2row3);
matrix_.set(3, 1, col2row4);
matrix_.set(0, 2, col3row1);
matrix_.set(1, 2, col3row2);
matrix_.set(2, 2, col3row3);
matrix_.set(3, 2, col3row4);
matrix_.set(0, 3, col4row1);
matrix_.set(1, 3, col4row2);
matrix_.set(2, 3, col4row3);
matrix_.set(3, 3, col4row4);
}
Transform::Transform(SkMScalar col1row1,
SkMScalar col2row1,
SkMScalar col1row2,
SkMScalar col2row2,
SkMScalar x_translation,
SkMScalar y_translation)
: matrix_(SkMatrix44::kIdentity_Constructor) {
matrix_.set(0, 0, col1row1);
matrix_.set(1, 0, col1row2);
matrix_.set(0, 1, col2row1);
matrix_.set(1, 1, col2row2);
matrix_.set(0, 3, x_translation);
matrix_.set(1, 3, y_translation);
}
void Transform::RotateAboutXAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
matrix_.set3x3(1, 0, 0,
0, cosTheta, sinTheta,
0, -sinTheta, cosTheta);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(1, 0, 0,
0, cosTheta, sinTheta,
0, -sinTheta, cosTheta);
matrix_.preConcat(rot);
}
}
void Transform::RotateAboutYAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
// Note carefully the placement of the -sinTheta for rotation about
// y-axis is different than rotation about x-axis or z-axis.
matrix_.set3x3(cosTheta, 0, -sinTheta,
0, 1, 0,
sinTheta, 0, cosTheta);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(cosTheta, 0, -sinTheta,
0, 1, 0,
sinTheta, 0, cosTheta);
matrix_.preConcat(rot);
}
}
void Transform::RotateAboutZAxis(double degrees) {
double radians = degrees * M_PI / 180;
SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians));
SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians));
if (matrix_.isIdentity()) {
matrix_.set3x3(cosTheta, sinTheta, 0,
-sinTheta, cosTheta, 0,
0, 0, 1);
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.set3x3(cosTheta, sinTheta, 0,
-sinTheta, cosTheta, 0,
0, 0, 1);
matrix_.preConcat(rot);
}
}
void Transform::RotateAbout(const Vector3dF& axis, double degrees) {
if (matrix_.isIdentity()) {
matrix_.setRotateDegreesAbout(SkFloatToMScalar(axis.x()),
SkFloatToMScalar(axis.y()),
SkFloatToMScalar(axis.z()),
SkDoubleToMScalar(degrees));
} else {
SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor);
rot.setRotateDegreesAbout(SkFloatToMScalar(axis.x()),
SkFloatToMScalar(axis.y()),
SkFloatToMScalar(axis.z()),
SkDoubleToMScalar(degrees));
matrix_.preConcat(rot);
}
}
void Transform::Scale(SkMScalar x, SkMScalar y) { matrix_.preScale(x, y, 1); }
void Transform::Scale3d(SkMScalar x, SkMScalar y, SkMScalar z) {
matrix_.preScale(x, y, z);
}
void Transform::Translate(SkMScalar x, SkMScalar y) {
matrix_.preTranslate(x, y, 0);
}
void Transform::Translate3d(SkMScalar x, SkMScalar y, SkMScalar z) {
matrix_.preTranslate(x, y, z);
}
void Transform::SkewX(double angle_x) {
if (matrix_.isIdentity()) {
matrix_.set(0, 1, TanDegrees(angle_x));
} else {
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
skew.set(0, 1, TanDegrees(angle_x));
matrix_.preConcat(skew);
}
}
void Transform::SkewY(double angle_y) {
if (matrix_.isIdentity()) {
matrix_.set(1, 0, TanDegrees(angle_y));
} else {
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
skew.set(1, 0, TanDegrees(angle_y));
matrix_.preConcat(skew);
}
}
void Transform::ApplyPerspectiveDepth(SkMScalar depth) {
if (depth == 0)
return;
if (matrix_.isIdentity()) {
matrix_.set(3, 2, -SK_MScalar1 / depth);
} else {
SkMatrix44 m(SkMatrix44::kIdentity_Constructor);
m.set(3, 2, -SK_MScalar1 / depth);
matrix_.preConcat(m);
}
}
void Transform::PreconcatTransform(const Transform& transform) {
matrix_.preConcat(transform.matrix_);
}
void Transform::ConcatTransform(const Transform& transform) {
matrix_.postConcat(transform.matrix_);
}
bool Transform::IsApproximatelyIdentityOrTranslation(
SkMScalar tolerance) const {
DCHECK_GE(tolerance, 0);
return
ApproximatelyOne(matrix_.get(0, 0), tolerance) &&
ApproximatelyZero(matrix_.get(1, 0), tolerance) &&
ApproximatelyZero(matrix_.get(2, 0), tolerance) &&
matrix_.get(3, 0) == 0 &&
ApproximatelyZero(matrix_.get(0, 1), tolerance) &&
ApproximatelyOne(matrix_.get(1, 1), tolerance) &&
ApproximatelyZero(matrix_.get(2, 1), tolerance) &&
matrix_.get(3, 1) == 0 &&
ApproximatelyZero(matrix_.get(0, 2), tolerance) &&
ApproximatelyZero(matrix_.get(1, 2), tolerance) &&
ApproximatelyOne(matrix_.get(2, 2), tolerance) &&
matrix_.get(3, 2) == 0 &&
matrix_.get(3, 3) == 1;
}
bool Transform::IsIdentityOrIntegerTranslation() const {
if (!IsIdentityOrTranslation())
return false;
bool no_fractional_translation =
static_cast<int>(matrix_.get(0, 3)) == matrix_.get(0, 3) &&
static_cast<int>(matrix_.get(1, 3)) == matrix_.get(1, 3) &&
static_cast<int>(matrix_.get(2, 3)) == matrix_.get(2, 3);
return no_fractional_translation;
}
bool Transform::IsBackFaceVisible() const {
// Compute whether a layer with a forward-facing normal of (0, 0, 1, 0)
// would have its back face visible after applying the transform.
if (matrix_.isIdentity())
return false;
// This is done by transforming the normal and seeing if the resulting z
// value is positive or negative. However, note that transforming a normal
// actually requires using the inverse-transpose of the original transform.
//
// We can avoid inverting and transposing the matrix since we know we want
// to transform only the specific normal vector (0, 0, 1, 0). In this case,
// we only need the 3rd row, 3rd column of the inverse-transpose. We can
// calculate only the 3rd row 3rd column element of the inverse, skipping
// everything else.
//
// For more information, refer to:
// http://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution
//
double determinant = matrix_.determinant();
// If matrix was not invertible, then just assume back face is not visible.
if (std::abs(determinant) <= kEpsilon)
return false;
// Compute the cofactor of the 3rd row, 3rd column.
double cofactor_part_1 =
matrix_.get(0, 0) * matrix_.get(1, 1) * matrix_.get(3, 3);
double cofactor_part_2 =
matrix_.get(0, 1) * matrix_.get(1, 3) * matrix_.get(3, 0);
double cofactor_part_3 =
matrix_.get(0, 3) * matrix_.get(1, 0) * matrix_.get(3, 1);
double cofactor_part_4 =
matrix_.get(0, 0) * matrix_.get(1, 3) * matrix_.get(3, 1);
double cofactor_part_5 =
matrix_.get(0, 1) * matrix_.get(1, 0) * matrix_.get(3, 3);
double cofactor_part_6 =
matrix_.get(0, 3) * matrix_.get(1, 1) * matrix_.get(3, 0);
double cofactor33 =
cofactor_part_1 +
cofactor_part_2 +
cofactor_part_3 -
cofactor_part_4 -
cofactor_part_5 -
cofactor_part_6;
// Technically the transformed z component is cofactor33 / determinant. But
// we can avoid the costly division because we only care about the resulting
// +/- sign; we can check this equivalently by multiplication.
return cofactor33 * determinant < 0;
}
bool Transform::GetInverse(Transform* transform) const {
if (!matrix_.invert(&transform->matrix_)) {
// Initialize the return value to identity if this matrix turned
// out to be un-invertible.
transform->MakeIdentity();
return false;
}
return true;
}
bool Transform::Preserves2dAxisAlignment() const {
// Check whether an axis aligned 2-dimensional rect would remain axis-aligned
// after being transformed by this matrix (and implicitly projected by
// dropping any non-zero z-values).
//
// The 4th column can be ignored because translations don't affect axis
// alignment. The 3rd column can be ignored because we are assuming 2d
// inputs, where z-values will be zero. The 3rd row can also be ignored
// because we are assuming 2d outputs, and any resulting z-value is dropped
// anyway. For the inner 2x2 portion, the only effects that keep a rect axis
// aligned are (1) swapping axes and (2) scaling axes. This can be checked by
// verifying only 1 element of every column and row is non-zero. Degenerate
// cases that project the x or y dimension to zero are considered to preserve
// axis alignment.
//
// If the matrix does have perspective component that is affected by x or y
// values: The current implementation conservatively assumes that axis
// alignment is not preserved.
bool has_x_or_y_perspective =
matrix_.get(3, 0) != 0 || matrix_.get(3, 1) != 0;
int num_non_zero_in_row_0 = 0;
int num_non_zero_in_row_1 = 0;
int num_non_zero_in_col_0 = 0;
int num_non_zero_in_col_1 = 0;
if (std::abs(matrix_.get(0, 0)) > kEpsilon) {
num_non_zero_in_row_0++;
num_non_zero_in_col_0++;
}
if (std::abs(matrix_.get(0, 1)) > kEpsilon) {
num_non_zero_in_row_0++;
num_non_zero_in_col_1++;
}
if (std::abs(matrix_.get(1, 0)) > kEpsilon) {
num_non_zero_in_row_1++;
num_non_zero_in_col_0++;
}
if (std::abs(matrix_.get(1, 1)) > kEpsilon) {
num_non_zero_in_row_1++;
num_non_zero_in_col_1++;
}
return
num_non_zero_in_row_0 <= 1 &&
num_non_zero_in_row_1 <= 1 &&
num_non_zero_in_col_0 <= 1 &&
num_non_zero_in_col_1 <= 1 &&
!has_x_or_y_perspective;
}
void Transform::Transpose() {
matrix_.transpose();
}
void Transform::FlattenTo2d() {
matrix_.set(2, 0, 0.0);
matrix_.set(2, 1, 0.0);
matrix_.set(0, 2, 0.0);
matrix_.set(1, 2, 0.0);
matrix_.set(2, 2, 1.0);
matrix_.set(3, 2, 0.0);
matrix_.set(2, 3, 0.0);
}
Vector2dF Transform::To2dTranslation() const {
return gfx::Vector2dF(SkMScalarToFloat(matrix_.get(0, 3)),
SkMScalarToFloat(matrix_.get(1, 3)));
}
void Transform::TransformPoint(Point* point) const {
DCHECK(point);
TransformPointInternal(matrix_, point);
}
void Transform::TransformPoint(Point3F* point) const {
DCHECK(point);
TransformPointInternal(matrix_, point);
}
bool Transform::TransformPointReverse(Point* point) const {
DCHECK(point);
// TODO(sad): Try to avoid trying to invert the matrix.
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
TransformPointInternal(inverse, point);
return true;
}
bool Transform::TransformPointReverse(Point3F* point) const {
DCHECK(point);
// TODO(sad): Try to avoid trying to invert the matrix.
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
TransformPointInternal(inverse, point);
return true;
}
void Transform::TransformRect(RectF* rect) const {
if (matrix_.isIdentity())
return;
SkRect src = RectFToSkRect(*rect);
const SkMatrix& matrix = matrix_;
matrix.mapRect(&src);
*rect = SkRectToRectF(src);
}
bool Transform::TransformRectReverse(RectF* rect) const {
if (matrix_.isIdentity())
return true;
SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor);
if (!matrix_.invert(&inverse))
return false;
const SkMatrix& matrix = inverse;
SkRect src = RectFToSkRect(*rect);
matrix.mapRect(&src);
*rect = SkRectToRectF(src);
return true;
}
void Transform::TransformBox(BoxF* box) const {
BoxF bounds;
bool first_point = true;
for (int corner = 0; corner < 8; ++corner) {
gfx::Point3F point = box->origin();
point += gfx::Vector3dF(corner & 1 ? box->width() : 0.f,
corner & 2 ? box->height() : 0.f,
corner & 4 ? box->depth() : 0.f);
TransformPoint(&point);
if (first_point) {
bounds.set_origin(point);
first_point = false;
} else {
bounds.ExpandTo(point);
}
}
*box = bounds;
}
bool Transform::TransformBoxReverse(BoxF* box) const {
gfx::Transform inverse = *this;
if (!GetInverse(&inverse))
return false;
inverse.TransformBox(box);
return true;
}
bool Transform::Blend(const Transform& from, double progress) {
DecomposedTransform to_decomp;
DecomposedTransform from_decomp;
if (!DecomposeTransform(&to_decomp, *this) ||
!DecomposeTransform(&from_decomp, from))
return false;
if (!BlendDecomposedTransforms(&to_decomp, to_decomp, from_decomp, progress))
return false;
matrix_ = ComposeTransform(to_decomp).matrix();
return true;
}
void Transform::TransformPointInternal(const SkMatrix44& xform,
Point3F* point) const {
if (xform.isIdentity())
return;
SkMScalar p[4] = {SkFloatToMScalar(point->x()), SkFloatToMScalar(point->y()),
SkFloatToMScalar(point->z()), 1};
xform.mapMScalars(p);
if (p[3] != SK_MScalar1 && p[3] != 0.f) {
float w_inverse = SK_MScalar1 / p[3];
point->SetPoint(p[0] * w_inverse, p[1] * w_inverse, p[2] * w_inverse);
} else {
point->SetPoint(p[0], p[1], p[2]);
}
}
void Transform::TransformPointInternal(const SkMatrix44& xform,
Point* point) const {
if (xform.isIdentity())
return;
SkMScalar p[4] = {SkIntToMScalar(point->x()), SkIntToMScalar(point->y()),
0, 1};
xform.mapMScalars(p);
point->SetPoint(ToRoundedInt(p[0]), ToRoundedInt(p[1]));
}
std::string Transform::ToString() const {
return base::StringPrintf(
"[ %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f \n"
" %+0.4f %+0.4f %+0.4f %+0.4f ]\n",
matrix_.get(0, 0),
matrix_.get(0, 1),
matrix_.get(0, 2),
matrix_.get(0, 3),
matrix_.get(1, 0),
matrix_.get(1, 1),
matrix_.get(1, 2),
matrix_.get(1, 3),
matrix_.get(2, 0),
matrix_.get(2, 1),
matrix_.get(2, 2),
matrix_.get(2, 3),
matrix_.get(3, 0),
matrix_.get(3, 1),
matrix_.get(3, 2),
matrix_.get(3, 3));
}
} // namespace gfx
|