1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/transform_util.h"
#include <algorithm>
#include <cmath>
#include <string>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/rect.h"
namespace gfx {
namespace {
SkMScalar Length3(SkMScalar v[3]) {
double vd[3] = {SkMScalarToDouble(v[0]), SkMScalarToDouble(v[1]),
SkMScalarToDouble(v[2])};
return SkDoubleToMScalar(
std::sqrt(vd[0] * vd[0] + vd[1] * vd[1] + vd[2] * vd[2]));
}
template <int n>
SkMScalar Dot(const SkMScalar* a, const SkMScalar* b) {
double total = 0.0;
for (int i = 0; i < n; ++i)
total += a[i] * b[i];
return SkDoubleToMScalar(total);
}
template <int n>
void Combine(SkMScalar* out,
const SkMScalar* a,
const SkMScalar* b,
double scale_a,
double scale_b) {
for (int i = 0; i < n; ++i)
out[i] = SkDoubleToMScalar(a[i] * scale_a + b[i] * scale_b);
}
void Cross3(SkMScalar out[3], SkMScalar a[3], SkMScalar b[3]) {
SkMScalar x = a[1] * b[2] - a[2] * b[1];
SkMScalar y = a[2] * b[0] - a[0] * b[2];
SkMScalar z = a[0] * b[1] - a[1] * b[0];
out[0] = x;
out[1] = y;
out[2] = z;
}
SkMScalar Round(SkMScalar n) {
return SkDoubleToMScalar(std::floor(SkMScalarToDouble(n) + 0.5));
}
// Taken from http://www.w3.org/TR/css3-transforms/.
bool Slerp(SkMScalar out[4],
const SkMScalar q1[4],
const SkMScalar q2[4],
double progress) {
double product = Dot<4>(q1, q2);
// Clamp product to -1.0 <= product <= 1.0.
product = std::min(std::max(product, -1.0), 1.0);
// Interpolate angles along the shortest path. For example, to interpolate
// between a 175 degree angle and a 185 degree angle, interpolate along the
// 10 degree path from 175 to 185, rather than along the 350 degree path in
// the opposite direction. This matches WebKit's implementation but not
// the current W3C spec. Fixing the spec to match this approach is discussed
// at:
// http://lists.w3.org/Archives/Public/www-style/2013May/0131.html
double scale1 = 1.0;
if (product < 0) {
product = -product;
scale1 = -1.0;
}
const double epsilon = 1e-5;
if (std::abs(product - 1.0) < epsilon) {
for (int i = 0; i < 4; ++i)
out[i] = q1[i];
return true;
}
double denom = std::sqrt(1.0 - product * product);
double theta = std::acos(product);
double w = std::sin(progress * theta) * (1.0 / denom);
scale1 *= std::cos(progress * theta) - product * w;
double scale2 = w;
Combine<4>(out, q1, q2, scale1, scale2);
return true;
}
// Returns false if the matrix cannot be normalized.
bool Normalize(SkMatrix44& m) {
if (m.get(3, 3) == 0.0)
// Cannot normalize.
return false;
SkMScalar scale = SK_MScalar1 / m.get(3, 3);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
m.set(i, j, m.get(i, j) * scale);
return true;
}
SkMatrix44 BuildPerspectiveMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
for (int i = 0; i < 4; i++)
matrix.setDouble(3, i, decomp.perspective[i]);
return matrix;
}
SkMatrix44 BuildTranslationMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
// Implicitly calls matrix.setIdentity()
matrix.setTranslate(SkDoubleToMScalar(decomp.translate[0]),
SkDoubleToMScalar(decomp.translate[1]),
SkDoubleToMScalar(decomp.translate[2]));
return matrix;
}
SkMatrix44 BuildSnappedTranslationMatrix(DecomposedTransform decomp) {
decomp.translate[0] = Round(decomp.translate[0]);
decomp.translate[1] = Round(decomp.translate[1]);
decomp.translate[2] = Round(decomp.translate[2]);
return BuildTranslationMatrix(decomp);
}
SkMatrix44 BuildRotationMatrix(const DecomposedTransform& decomp) {
double x = decomp.quaternion[0];
double y = decomp.quaternion[1];
double z = decomp.quaternion[2];
double w = decomp.quaternion[3];
SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
// Implicitly calls matrix.setIdentity()
matrix.set3x3(SkDoubleToMScalar(1.0 - 2.0 * (y * y + z * z)),
SkDoubleToMScalar(2.0 * (x * y + z * w)),
SkDoubleToMScalar(2.0 * (x * z - y * w)),
SkDoubleToMScalar(2.0 * (x * y - z * w)),
SkDoubleToMScalar(1.0 - 2.0 * (x * x + z * z)),
SkDoubleToMScalar(2.0 * (y * z + x * w)),
SkDoubleToMScalar(2.0 * (x * z + y * w)),
SkDoubleToMScalar(2.0 * (y * z - x * w)),
SkDoubleToMScalar(1.0 - 2.0 * (x * x + y * y)));
return matrix;
}
SkMatrix44 BuildSnappedRotationMatrix(const DecomposedTransform& decomp) {
// Create snapped rotation.
SkMatrix44 rotation_matrix = BuildRotationMatrix(decomp);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
SkMScalar value = rotation_matrix.get(i, j);
// Snap values to -1, 0 or 1.
if (value < -0.5f) {
value = -1.0f;
} else if (value > 0.5f) {
value = 1.0f;
} else {
value = 0.0f;
}
rotation_matrix.set(i, j, value);
}
}
return rotation_matrix;
}
SkMatrix44 BuildSkewMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
SkMatrix44 temp(SkMatrix44::kIdentity_Constructor);
if (decomp.skew[2]) {
temp.setDouble(1, 2, decomp.skew[2]);
matrix.preConcat(temp);
}
if (decomp.skew[1]) {
temp.setDouble(1, 2, 0);
temp.setDouble(0, 2, decomp.skew[1]);
matrix.preConcat(temp);
}
if (decomp.skew[0]) {
temp.setDouble(0, 2, 0);
temp.setDouble(0, 1, decomp.skew[0]);
matrix.preConcat(temp);
}
return matrix;
}
SkMatrix44 BuildScaleMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
matrix.setScale(SkDoubleToMScalar(decomp.scale[0]),
SkDoubleToMScalar(decomp.scale[1]),
SkDoubleToMScalar(decomp.scale[2]));
return matrix;
}
SkMatrix44 BuildSnappedScaleMatrix(DecomposedTransform decomp) {
decomp.scale[0] = Round(decomp.scale[0]);
decomp.scale[1] = Round(decomp.scale[1]);
decomp.scale[2] = Round(decomp.scale[2]);
return BuildScaleMatrix(decomp);
}
Transform ComposeTransform(const SkMatrix44& perspective,
const SkMatrix44& translation,
const SkMatrix44& rotation,
const SkMatrix44& skew,
const SkMatrix44& scale) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
matrix.preConcat(perspective);
matrix.preConcat(translation);
matrix.preConcat(rotation);
matrix.preConcat(skew);
matrix.preConcat(scale);
Transform to_return;
to_return.matrix() = matrix;
return to_return;
}
bool CheckViewportPointMapsWithinOnePixel(const Point& point,
const Transform& transform) {
Point3F point_original(point);
Point3F point_transformed(point);
// Can't use TransformRect here since it would give us the axis-aligned
// bounding rect of the 4 points in the initial rectable which is not what we
// want.
transform.TransformPoint(&point_transformed);
if ((point_transformed - point_original).Length() > 1.f) {
// The changed distance should not be more than 1 pixel.
return false;
}
return true;
}
bool CheckTransformsMapsIntViewportWithinOnePixel(const Rect& viewport,
const Transform& original,
const Transform& snapped) {
Transform original_inv(Transform::kSkipInitialization);
bool invertible = true;
invertible &= original.GetInverse(&original_inv);
DCHECK(invertible) << "Non-invertible transform, cannot snap.";
Transform combined = snapped * original_inv;
return CheckViewportPointMapsWithinOnePixel(viewport.origin(), combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.top_right(), combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.bottom_left(),
combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.bottom_right(),
combined);
}
} // namespace
Transform GetScaleTransform(const Point& anchor, float scale) {
Transform transform;
transform.Translate(anchor.x() * (1 - scale),
anchor.y() * (1 - scale));
transform.Scale(scale, scale);
return transform;
}
DecomposedTransform::DecomposedTransform() {
translate[0] = translate[1] = translate[2] = 0.0;
scale[0] = scale[1] = scale[2] = 1.0;
skew[0] = skew[1] = skew[2] = 0.0;
perspective[0] = perspective[1] = perspective[2] = 0.0;
quaternion[0] = quaternion[1] = quaternion[2] = 0.0;
perspective[3] = quaternion[3] = 1.0;
}
bool BlendDecomposedTransforms(DecomposedTransform* out,
const DecomposedTransform& to,
const DecomposedTransform& from,
double progress) {
double scalea = progress;
double scaleb = 1.0 - progress;
Combine<3>(out->translate, to.translate, from.translate, scalea, scaleb);
Combine<3>(out->scale, to.scale, from.scale, scalea, scaleb);
Combine<3>(out->skew, to.skew, from.skew, scalea, scaleb);
Combine<4>(
out->perspective, to.perspective, from.perspective, scalea, scaleb);
return Slerp(out->quaternion, from.quaternion, to.quaternion, progress);
}
// Taken from http://www.w3.org/TR/css3-transforms/.
bool DecomposeTransform(DecomposedTransform* decomp,
const Transform& transform) {
if (!decomp)
return false;
// We'll operate on a copy of the matrix.
SkMatrix44 matrix = transform.matrix();
// If we cannot normalize the matrix, then bail early as we cannot decompose.
if (!Normalize(matrix))
return false;
SkMatrix44 perspectiveMatrix = matrix;
for (int i = 0; i < 3; ++i)
perspectiveMatrix.set(3, i, 0.0);
perspectiveMatrix.set(3, 3, 1.0);
// If the perspective matrix is not invertible, we are also unable to
// decompose, so we'll bail early. Constant taken from SkMatrix44::invert.
if (std::abs(perspectiveMatrix.determinant()) < 1e-8)
return false;
if (matrix.get(3, 0) != 0.0 || matrix.get(3, 1) != 0.0 ||
matrix.get(3, 2) != 0.0) {
// rhs is the right hand side of the equation.
SkMScalar rhs[4] = {
matrix.get(3, 0),
matrix.get(3, 1),
matrix.get(3, 2),
matrix.get(3, 3)
};
// Solve the equation by inverting perspectiveMatrix and multiplying
// rhs by the inverse.
SkMatrix44 inversePerspectiveMatrix(SkMatrix44::kUninitialized_Constructor);
if (!perspectiveMatrix.invert(&inversePerspectiveMatrix))
return false;
SkMatrix44 transposedInversePerspectiveMatrix =
inversePerspectiveMatrix;
transposedInversePerspectiveMatrix.transpose();
transposedInversePerspectiveMatrix.mapMScalars(rhs);
for (int i = 0; i < 4; ++i)
decomp->perspective[i] = rhs[i];
} else {
// No perspective.
for (int i = 0; i < 3; ++i)
decomp->perspective[i] = 0.0;
decomp->perspective[3] = 1.0;
}
for (int i = 0; i < 3; i++)
decomp->translate[i] = matrix.get(i, 3);
SkMScalar row[3][3];
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; ++j)
row[i][j] = matrix.get(j, i);
// Compute X scale factor and normalize first row.
decomp->scale[0] = Length3(row[0]);
if (decomp->scale[0] != 0.0) {
row[0][0] /= decomp->scale[0];
row[0][1] /= decomp->scale[0];
row[0][2] /= decomp->scale[0];
}
// Compute XY shear factor and make 2nd row orthogonal to 1st.
decomp->skew[0] = Dot<3>(row[0], row[1]);
Combine<3>(row[1], row[1], row[0], 1.0, -decomp->skew[0]);
// Now, compute Y scale and normalize 2nd row.
decomp->scale[1] = Length3(row[1]);
if (decomp->scale[1] != 0.0) {
row[1][0] /= decomp->scale[1];
row[1][1] /= decomp->scale[1];
row[1][2] /= decomp->scale[1];
}
decomp->skew[0] /= decomp->scale[1];
// Compute XZ and YZ shears, orthogonalize 3rd row
decomp->skew[1] = Dot<3>(row[0], row[2]);
Combine<3>(row[2], row[2], row[0], 1.0, -decomp->skew[1]);
decomp->skew[2] = Dot<3>(row[1], row[2]);
Combine<3>(row[2], row[2], row[1], 1.0, -decomp->skew[2]);
// Next, get Z scale and normalize 3rd row.
decomp->scale[2] = Length3(row[2]);
if (decomp->scale[2] != 0.0) {
row[2][0] /= decomp->scale[2];
row[2][1] /= decomp->scale[2];
row[2][2] /= decomp->scale[2];
}
decomp->skew[1] /= decomp->scale[2];
decomp->skew[2] /= decomp->scale[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
SkMScalar pdum3[3];
Cross3(pdum3, row[1], row[2]);
if (Dot<3>(row[0], pdum3) < 0) {
for (int i = 0; i < 3; i++) {
decomp->scale[i] *= -1.0;
for (int j = 0; j < 3; ++j)
row[i][j] *= -1.0;
}
}
double row00 = SkMScalarToDouble(row[0][0]);
double row11 = SkMScalarToDouble(row[1][1]);
double row22 = SkMScalarToDouble(row[2][2]);
decomp->quaternion[0] = SkDoubleToMScalar(
0.5 * std::sqrt(std::max(1.0 + row00 - row11 - row22, 0.0)));
decomp->quaternion[1] = SkDoubleToMScalar(
0.5 * std::sqrt(std::max(1.0 - row00 + row11 - row22, 0.0)));
decomp->quaternion[2] = SkDoubleToMScalar(
0.5 * std::sqrt(std::max(1.0 - row00 - row11 + row22, 0.0)));
decomp->quaternion[3] = SkDoubleToMScalar(
0.5 * std::sqrt(std::max(1.0 + row00 + row11 + row22, 0.0)));
if (row[2][1] > row[1][2])
decomp->quaternion[0] = -decomp->quaternion[0];
if (row[0][2] > row[2][0])
decomp->quaternion[1] = -decomp->quaternion[1];
if (row[1][0] > row[0][1])
decomp->quaternion[2] = -decomp->quaternion[2];
return true;
}
// Taken from http://www.w3.org/TR/css3-transforms/.
Transform ComposeTransform(const DecomposedTransform& decomp) {
SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
SkMatrix44 translation = BuildTranslationMatrix(decomp);
SkMatrix44 rotation = BuildRotationMatrix(decomp);
SkMatrix44 skew = BuildSkewMatrix(decomp);
SkMatrix44 scale = BuildScaleMatrix(decomp);
return ComposeTransform(perspective, translation, rotation, skew, scale);
}
bool SnapTransform(Transform* out,
const Transform& transform,
const Rect& viewport) {
DecomposedTransform decomp;
DecomposeTransform(&decomp, transform);
SkMatrix44 rotation_matrix = BuildSnappedRotationMatrix(decomp);
SkMatrix44 translation = BuildSnappedTranslationMatrix(decomp);
SkMatrix44 scale = BuildSnappedScaleMatrix(decomp);
// Rebuild matrices for other unchanged components.
SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
// Completely ignore the skew.
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
// Get full tranform
Transform snapped =
ComposeTransform(perspective, translation, rotation_matrix, skew, scale);
// Verify that viewport is not moved unnaturally.
bool snappable =
CheckTransformsMapsIntViewportWithinOnePixel(viewport, transform, snapped);
if (snappable) {
*out = snapped;
}
return snappable;
}
Transform TransformAboutPivot(const gfx::Point& pivot,
const gfx::Transform& transform) {
gfx::Transform result;
result.Translate(pivot.x(), pivot.y());
result.PreconcatTransform(transform);
result.Translate(-pivot.x(), -pivot.y());
return result;
}
std::string DecomposedTransform::ToString() const {
return base::StringPrintf(
"translate: %+0.4f %+0.4f %+0.4f\n"
"scale: %+0.4f %+0.4f %+0.4f\n"
"skew: %+0.4f %+0.4f %+0.4f\n"
"perspective: %+0.4f %+0.4f %+0.4f %+0.4f\n"
"quaternion: %+0.4f %+0.4f %+0.4f %+0.4f\n",
translate[0],
translate[1],
translate[2],
scale[0],
scale[1],
scale[2],
skew[0],
skew[1],
skew[2],
perspective[0],
perspective[1],
perspective[2],
perspective[3],
quaternion[0],
quaternion[1],
quaternion[2],
quaternion[3]);
}
} // namespace gfx
|