File: time.cc

package info (click to toggle)
chromium-browser 57.0.2987.98-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 2,637,852 kB
  • ctags: 2,544,394
  • sloc: cpp: 12,815,961; ansic: 3,676,222; python: 1,147,112; asm: 526,608; java: 523,212; xml: 286,794; perl: 92,654; sh: 86,408; objc: 73,271; makefile: 27,698; cs: 18,487; yacc: 13,031; tcl: 12,957; pascal: 4,875; ml: 4,716; lex: 3,904; sql: 3,862; ruby: 1,982; lisp: 1,508; php: 1,368; exp: 404; awk: 325; csh: 117; jsp: 39; sed: 37
file content (356 lines) | stat: -rw-r--r-- 10,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/time/time.h"

#include <cmath>
#include <ios>
#include <limits>
#include <ostream>
#include <sstream>

#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/stringprintf.h"
#include <nspr/prtime.h>
#include "build/build_config.h"

namespace base {

// TimeDelta ------------------------------------------------------------------

// static
TimeDelta TimeDelta::Max() {
  return TimeDelta(std::numeric_limits<int64_t>::max());
}

int TimeDelta::InDays() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}

int TimeDelta::InHours() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}

int TimeDelta::InMinutes() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}

double TimeDelta::InSecondsF() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}

int64_t TimeDelta::InSeconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_ / Time::kMicrosecondsPerSecond;
}

double TimeDelta::InMillisecondsF() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMilliseconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_ / Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMillisecondsRoundedUp() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
      Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMicroseconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_;
}

namespace time_internal {

int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
  CheckedNumeric<int64_t> rv(delta.delta_);
  rv += value;
  if (rv.IsValid())
    return rv.ValueOrDie();
  // Positive RHS overflows. Negative RHS underflows.
  if (value < 0)
    return -std::numeric_limits<int64_t>::max();
  return std::numeric_limits<int64_t>::max();
}

int64_t SaturatedSub(TimeDelta delta, int64_t value) {
  CheckedNumeric<int64_t> rv(delta.delta_);
  rv -= value;
  if (rv.IsValid())
    return rv.ValueOrDie();
  // Negative RHS overflows. Positive RHS underflows.
  if (value < 0)
    return std::numeric_limits<int64_t>::max();
  return -std::numeric_limits<int64_t>::max();
}

}  // namespace time_internal

std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
  return os << time_delta.InSecondsF() << " s";
}

// Time -----------------------------------------------------------------------

// static
Time Time::FromTimeT(time_t tt) {
  if (tt == 0)
    return Time();  // Preserve 0 so we can tell it doesn't exist.
  if (tt == std::numeric_limits<time_t>::max())
    return Max();
  return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
}

time_t Time::ToTimeT() const {
  if (is_null())
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<time_t>::max();
  }
  if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
    DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
                     "value " << us_ << " to time_t.";
    return std::numeric_limits<time_t>::max();
  }
  return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
}

// static
Time Time::FromDoubleT(double dt) {
  if (dt == 0 || std::isnan(dt))
    return Time();  // Preserve 0 so we can tell it doesn't exist.
  return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
}

double Time::ToDoubleT() const {
  if (is_null())
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
          static_cast<double>(kMicrosecondsPerSecond));
}

#if defined(OS_POSIX)
// static
Time Time::FromTimeSpec(const timespec& ts) {
  return FromDoubleT(ts.tv_sec +
                     static_cast<double>(ts.tv_nsec) /
                         base::Time::kNanosecondsPerSecond);
}
#endif

// static
Time Time::FromJsTime(double ms_since_epoch) {
  // The epoch is a valid time, so this constructor doesn't interpret
  // 0 as the null time.
  return Time(kTimeTToMicrosecondsOffset) +
         TimeDelta::FromMillisecondsD(ms_since_epoch);
}

double Time::ToJsTime() const {
  if (is_null()) {
    // Preserve 0 so the invalid result doesn't depend on the platform.
    return 0;
  }
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
          kMicrosecondsPerMillisecond);
}

Time Time::FromJavaTime(int64_t ms_since_epoch) {
  return base::Time::UnixEpoch() +
         base::TimeDelta::FromMilliseconds(ms_since_epoch);
}

int64_t Time::ToJavaTime() const {
  if (is_null()) {
    // Preserve 0 so the invalid result doesn't depend on the platform.
    return 0;
  }
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return ((us_ - kTimeTToMicrosecondsOffset) /
          kMicrosecondsPerMillisecond);
}

// static
Time Time::UnixEpoch() {
  Time time;
  time.us_ = kTimeTToMicrosecondsOffset;
  return time;
}

Time Time::LocalMidnight() const {
  Exploded exploded;
  LocalExplode(&exploded);
  exploded.hour = 0;
  exploded.minute = 0;
  exploded.second = 0;
  exploded.millisecond = 0;
  Time out_time;
  if (FromLocalExploded(exploded, &out_time))
    return out_time;
  // This function must not fail.
  NOTREACHED();
  return Time();
}

// static
bool Time::FromStringInternal(const char* time_string,
                              bool is_local,
                              Time* parsed_time) {
  DCHECK((time_string != NULL) && (parsed_time != NULL));

  if (time_string[0] == '\0')
    return false;

  PRTime result_time = 0;
  PRStatus result = PR_ParseTimeString(time_string,
                                       is_local ? PR_FALSE : PR_TRUE,
                                       &result_time);
  if (PR_SUCCESS != result)
    return false;

  result_time += kTimeTToMicrosecondsOffset;
  *parsed_time = Time(result_time);
  return true;
}

// static
bool Time::ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) {
  return lhs.year == rhs.year && lhs.month == rhs.month &&
         lhs.day_of_month == rhs.day_of_month && lhs.hour == rhs.hour &&
         lhs.minute == rhs.minute && lhs.second == rhs.second &&
         lhs.millisecond == rhs.millisecond;
}

std::ostream& operator<<(std::ostream& os, Time time) {
  Time::Exploded exploded;
  time.UTCExplode(&exploded);
  // Use StringPrintf because iostreams formatting is painful.
  return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
                            exploded.year,
                            exploded.month,
                            exploded.day_of_month,
                            exploded.hour,
                            exploded.minute,
                            exploded.second,
                            exploded.millisecond);
}

// Local helper class to hold the conversion from Time to TickTime at the
// time of the Unix epoch.
class UnixEpochSingleton {
 public:
  UnixEpochSingleton()
      : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}

  TimeTicks unix_epoch() const { return unix_epoch_; }

 private:
  const TimeTicks unix_epoch_;

  DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
};

static LazyInstance<UnixEpochSingleton>::Leaky
    leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;

// Static
TimeTicks TimeTicks::UnixEpoch() {
  return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
}

TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
                                       TimeDelta tick_interval) const {
  // |interval_offset| is the offset from |this| to the next multiple of
  // |tick_interval| after |tick_phase|, possibly negative if in the past.
  TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
  // If |this| is exactly on the interval (i.e. offset==0), don't adjust.
  // Otherwise, if |tick_phase| was in the past, adjust forward to the next
  // tick after |this|.
  if (!interval_offset.is_zero() && tick_phase < *this)
    interval_offset += tick_interval;
  return *this + interval_offset;
}

std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
  // This function formats a TimeTicks object as "bogo-microseconds".
  // The origin and granularity of the count are platform-specific, and may very
  // from run to run. Although bogo-microseconds usually roughly correspond to
  // real microseconds, the only real guarantee is that the number never goes
  // down during a single run.
  const TimeDelta as_time_delta = time_ticks - TimeTicks();
  return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
}

std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
  const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
  return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
}

// Time::Exploded -------------------------------------------------------------

inline bool is_in_range(int value, int lo, int hi) {
  return lo <= value && value <= hi;
}

bool Time::Exploded::HasValidValues() const {
  return is_in_range(month, 1, 12) &&
         is_in_range(day_of_week, 0, 6) &&
         is_in_range(day_of_month, 1, 31) &&
         is_in_range(hour, 0, 23) &&
         is_in_range(minute, 0, 59) &&
         is_in_range(second, 0, 60) &&
         is_in_range(millisecond, 0, 999);
}

}  // namespace base