1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/memory_pressure_monitor_chromeos.h"
#include <fcntl.h>
#include <sys/select.h>
#include "base/metrics/histogram_macros.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/process_metrics.h"
#include "base/single_thread_task_runner.h"
#include "base/sys_info.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
namespace base {
namespace chromeos {
namespace {
// The time between memory pressure checks. While under critical pressure, this
// is also the timer to repeat cleanup attempts.
const int kMemoryPressureIntervalMs = 1000;
// The time which should pass between two moderate memory pressure calls.
const int kModerateMemoryPressureCooldownMs = 10000;
// Number of event polls before the next moderate pressure event can be sent.
const int kModerateMemoryPressureCooldown =
kModerateMemoryPressureCooldownMs / kMemoryPressureIntervalMs;
// Threshold constants to emit pressure events.
const int kNormalMemoryPressureModerateThresholdPercent = 60;
const int kNormalMemoryPressureCriticalThresholdPercent = 95;
const int kAggressiveMemoryPressureModerateThresholdPercent = 35;
const int kAggressiveMemoryPressureCriticalThresholdPercent = 70;
// The possible state for memory pressure level. The values should be in line
// with values in MemoryPressureListener::MemoryPressureLevel and should be
// updated if more memory pressure levels are introduced.
enum MemoryPressureLevelUMA {
MEMORY_PRESSURE_LEVEL_NONE = 0,
MEMORY_PRESSURE_LEVEL_MODERATE,
MEMORY_PRESSURE_LEVEL_CRITICAL,
NUM_MEMORY_PRESSURE_LEVELS
};
// This is the file that will exist if low memory notification is available
// on the device. Whenever it becomes readable, it signals a low memory
// condition.
const char kLowMemFile[] = "/dev/chromeos-low-mem";
// Converts a |MemoryPressureThreshold| value into a used memory percentage for
// the moderate pressure event.
int GetModerateMemoryThresholdInPercent(
MemoryPressureMonitor::MemoryPressureThresholds thresholds) {
return thresholds == MemoryPressureMonitor::
THRESHOLD_AGGRESSIVE_CACHE_DISCARD ||
thresholds == MemoryPressureMonitor::THRESHOLD_AGGRESSIVE
? kAggressiveMemoryPressureModerateThresholdPercent
: kNormalMemoryPressureModerateThresholdPercent;
}
// Converts a |MemoryPressureThreshold| value into a used memory percentage for
// the critical pressure event.
int GetCriticalMemoryThresholdInPercent(
MemoryPressureMonitor::MemoryPressureThresholds thresholds) {
return thresholds == MemoryPressureMonitor::
THRESHOLD_AGGRESSIVE_TAB_DISCARD ||
thresholds == MemoryPressureMonitor::THRESHOLD_AGGRESSIVE
? kAggressiveMemoryPressureCriticalThresholdPercent
: kNormalMemoryPressureCriticalThresholdPercent;
}
// Converts free percent of memory into a memory pressure value.
MemoryPressureListener::MemoryPressureLevel GetMemoryPressureLevelFromFillLevel(
int actual_fill_level,
int moderate_threshold,
int critical_threshold) {
if (actual_fill_level < moderate_threshold)
return MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE;
return actual_fill_level < critical_threshold
? MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE
: MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL;
}
// This function will be called less than once a second. It will check if
// the kernel has detected a low memory situation.
bool IsLowMemoryCondition(int file_descriptor) {
fd_set fds;
struct timeval tv;
FD_ZERO(&fds);
FD_SET(file_descriptor, &fds);
tv.tv_sec = 0;
tv.tv_usec = 0;
return HANDLE_EINTR(select(file_descriptor + 1, &fds, NULL, NULL, &tv)) > 0;
}
} // namespace
MemoryPressureMonitor::MemoryPressureMonitor(
MemoryPressureThresholds thresholds)
: current_memory_pressure_level_(
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE),
moderate_pressure_repeat_count_(0),
seconds_since_reporting_(0),
moderate_pressure_threshold_percent_(
GetModerateMemoryThresholdInPercent(thresholds)),
critical_pressure_threshold_percent_(
GetCriticalMemoryThresholdInPercent(thresholds)),
low_mem_file_(HANDLE_EINTR(::open(kLowMemFile, O_RDONLY))),
dispatch_callback_(
base::Bind(&MemoryPressureListener::NotifyMemoryPressure)),
weak_ptr_factory_(this) {
StartObserving();
LOG_IF(ERROR,
base::SysInfo::IsRunningOnChromeOS() && !low_mem_file_.is_valid())
<< "Cannot open kernel listener";
}
MemoryPressureMonitor::~MemoryPressureMonitor() {
StopObserving();
}
void MemoryPressureMonitor::ScheduleEarlyCheck() {
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, Bind(&MemoryPressureMonitor::CheckMemoryPressure,
weak_ptr_factory_.GetWeakPtr()));
}
MemoryPressureListener::MemoryPressureLevel
MemoryPressureMonitor::GetCurrentPressureLevel() {
return current_memory_pressure_level_;
}
// static
MemoryPressureMonitor* MemoryPressureMonitor::Get() {
return static_cast<MemoryPressureMonitor*>(
base::MemoryPressureMonitor::Get());
}
void MemoryPressureMonitor::StartObserving() {
timer_.Start(FROM_HERE,
TimeDelta::FromMilliseconds(kMemoryPressureIntervalMs),
Bind(&MemoryPressureMonitor::
CheckMemoryPressureAndRecordStatistics,
weak_ptr_factory_.GetWeakPtr()));
}
void MemoryPressureMonitor::StopObserving() {
// If StartObserving failed, StopObserving will still get called.
timer_.Stop();
}
void MemoryPressureMonitor::CheckMemoryPressureAndRecordStatistics() {
CheckMemoryPressure();
if (seconds_since_reporting_++ == 5) {
seconds_since_reporting_ = 0;
RecordMemoryPressure(current_memory_pressure_level_, 1);
}
// Record UMA histogram statistics for the current memory pressure level.
// TODO(lgrey): Remove this once there's a usable history for the
// "Memory.PressureLevel" statistic
MemoryPressureLevelUMA memory_pressure_level_uma(MEMORY_PRESSURE_LEVEL_NONE);
switch (current_memory_pressure_level_) {
case MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE:
memory_pressure_level_uma = MEMORY_PRESSURE_LEVEL_NONE;
break;
case MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE:
memory_pressure_level_uma = MEMORY_PRESSURE_LEVEL_MODERATE;
break;
case MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL:
memory_pressure_level_uma = MEMORY_PRESSURE_LEVEL_CRITICAL;
break;
}
UMA_HISTOGRAM_ENUMERATION("ChromeOS.MemoryPressureLevel",
memory_pressure_level_uma,
NUM_MEMORY_PRESSURE_LEVELS);
}
void MemoryPressureMonitor::CheckMemoryPressure() {
MemoryPressureListener::MemoryPressureLevel old_pressure =
current_memory_pressure_level_;
// If we have the kernel low memory observer, we use it's flag instead of our
// own computation (for now). Note that in "simulation mode" it can be null.
// TODO(skuhne): We need to add code which makes sure that the kernel and this
// computation come to similar results and then remove this override again.
// TODO(skuhne): Add some testing framework here to see how close the kernel
// and the internal functions are.
if (low_mem_file_.is_valid() && IsLowMemoryCondition(low_mem_file_.get())) {
current_memory_pressure_level_ =
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL;
} else {
current_memory_pressure_level_ = GetMemoryPressureLevelFromFillLevel(
GetUsedMemoryInPercent(),
moderate_pressure_threshold_percent_,
critical_pressure_threshold_percent_);
// When listening to the kernel, we ignore the reported memory pressure
// level from our own computation and reduce critical to moderate.
if (low_mem_file_.is_valid() &&
current_memory_pressure_level_ ==
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL) {
current_memory_pressure_level_ =
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE;
}
}
// In case there is no memory pressure we do not notify.
if (current_memory_pressure_level_ ==
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE) {
return;
}
if (old_pressure == current_memory_pressure_level_) {
// If the memory pressure is still at the same level, we notify again for a
// critical level. In case of a moderate level repeat however, we only send
// a notification after a certain time has passed.
if (current_memory_pressure_level_ ==
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE &&
++moderate_pressure_repeat_count_ <
kModerateMemoryPressureCooldown) {
return;
}
} else if (current_memory_pressure_level_ ==
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE &&
old_pressure ==
MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL) {
// When we reducing the pressure level from critical to moderate, we
// restart the timeout and do not send another notification.
moderate_pressure_repeat_count_ = 0;
return;
}
moderate_pressure_repeat_count_ = 0;
dispatch_callback_.Run(current_memory_pressure_level_);
}
// Gets the used ChromeOS memory in percent.
int MemoryPressureMonitor::GetUsedMemoryInPercent() {
base::SystemMemoryInfoKB info;
if (!base::GetSystemMemoryInfo(&info)) {
VLOG(1) << "Cannot determine the free memory of the system.";
return 0;
}
// TODO(skuhne): Instead of adding the kernel memory pressure calculation
// logic here, we should have a kernel mechanism similar to the low memory
// notifier in ChromeOS which offers multiple pressure states.
// To track this, we have crbug.com/381196.
// The available memory consists of "real" and virtual (z)ram memory.
// Since swappable memory uses a non pre-deterministic compression and
// the compression creates its own "dynamic" in the system, it gets
// de-emphasized by the |kSwapWeight| factor.
const int kSwapWeight = 4;
// The total memory we have is the "real memory" plus the virtual (z)ram.
int total_memory = info.total + info.swap_total / kSwapWeight;
// The kernel internally uses 50MB.
const int kMinFileMemory = 50 * 1024;
// Most file memory can be easily reclaimed.
int file_memory = info.active_file + info.inactive_file;
// unless it is dirty or it's a minimal portion which is required.
file_memory -= info.dirty + kMinFileMemory;
// Available memory is the sum of free, swap and easy reclaimable memory.
int available_memory =
info.free + info.swap_free / kSwapWeight + file_memory;
DCHECK(available_memory < total_memory);
int percentage = ((total_memory - available_memory) * 100) / total_memory;
return percentage;
}
void MemoryPressureMonitor::SetDispatchCallback(
const DispatchCallback& callback) {
dispatch_callback_ = callback;
}
} // namespace chromeos
} // namespace base
|