1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_memory_allocator.h"
#include <assert.h>
#include <algorithm>
#if defined(OS_WIN)
#include "winbase.h"
#elif defined(OS_POSIX)
#include <sys/mman.h>
#endif
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/memory/shared_memory.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/sparse_histogram.h"
namespace {
// Limit of memory segment size. It has to fit in an unsigned 32-bit number
// and should be a power of 2 in order to accomodate almost any page size.
const uint32_t kSegmentMaxSize = 1 << 30; // 1 GiB
// A constant (random) value placed in the shared metadata to identify
// an already initialized memory segment.
const uint32_t kGlobalCookie = 0x408305DC;
// The current version of the metadata. If updates are made that change
// the metadata, the version number can be queried to operate in a backward-
// compatible manner until the memory segment is completely re-initalized.
const uint32_t kGlobalVersion = 1;
// Constant values placed in the block headers to indicate its state.
const uint32_t kBlockCookieFree = 0;
const uint32_t kBlockCookieQueue = 1;
const uint32_t kBlockCookieWasted = (uint32_t)-1;
const uint32_t kBlockCookieAllocated = 0xC8799269;
// TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
// types rather than combined bitfield.
// Flags stored in the flags_ field of the SharedMetaData structure below.
enum : int {
kFlagCorrupt = 1 << 0,
kFlagFull = 1 << 1
};
// Errors that are logged in "errors" histogram.
enum AllocatorError : int {
kMemoryIsCorrupt = 1,
};
bool CheckFlag(const volatile std::atomic<uint32_t>* flags, int flag) {
uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
return (loaded_flags & flag) != 0;
}
void SetFlag(volatile std::atomic<uint32_t>* flags, int flag) {
uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
for (;;) {
uint32_t new_flags = (loaded_flags & ~flag) | flag;
// In the failue case, actual "flags" value stored in loaded_flags.
// These access are "relaxed" because they are completely independent
// of all other values.
if (flags->compare_exchange_weak(loaded_flags, new_flags,
std::memory_order_relaxed,
std::memory_order_relaxed)) {
break;
}
}
}
} // namespace
namespace base {
// All allocations and data-structures must be aligned to this byte boundary.
// Alignment as large as the physical bus between CPU and RAM is _required_
// for some architectures, is simply more efficient on other CPUs, and
// generally a Good Idea(tm) for all platforms as it reduces/eliminates the
// chance that a type will span cache lines. Alignment mustn't be less
// than 8 to ensure proper alignment for all types. The rest is a balance
// between reducing spans across multiple cache lines and wasted space spent
// padding out allocations. An alignment of 16 would ensure that the block
// header structure always sits in a single cache line. An average of about
// 1/2 this value will be wasted with every allocation.
const uint32_t PersistentMemoryAllocator::kAllocAlignment = 8;
// The block-header is placed at the top of every allocation within the
// segment to describe the data that follows it.
struct PersistentMemoryAllocator::BlockHeader {
uint32_t size; // Number of bytes in this block, including header.
uint32_t cookie; // Constant value indicating completed allocation.
std::atomic<uint32_t> type_id; // Arbitrary number indicating data type.
std::atomic<uint32_t> next; // Pointer to the next block when iterating.
};
// The shared metadata exists once at the top of the memory segment to
// describe the state of the allocator to all processes.
struct PersistentMemoryAllocator::SharedMetadata {
uint32_t cookie; // Some value that indicates complete initialization.
uint32_t size; // Total size of memory segment.
uint32_t page_size; // Paging size within memory segment.
uint32_t version; // Version code so upgrades don't break.
uint64_t id; // Arbitrary ID number given by creator.
uint32_t name; // Reference to stored name string.
// Above is read-only after first construction. Below may be changed and
// so must be marked "volatile" to provide correct inter-process behavior.
// Bitfield of information flags. Access to this should be done through
// the CheckFlag() and SetFlag() methods defined above.
volatile std::atomic<uint32_t> flags;
// Offset/reference to first free space in segment.
volatile std::atomic<uint32_t> freeptr;
// The "iterable" queue is an M&S Queue as described here, append-only:
// https://www.research.ibm.com/people/m/michael/podc-1996.pdf
volatile std::atomic<uint32_t> tailptr; // Last block of iteration queue.
volatile BlockHeader queue; // Empty block for linked-list head/tail.
};
// The "queue" block header is used to detect "last node" so that zero/null
// can be used to indicate that it hasn't been added at all. It is part of
// the SharedMetadata structure which itself is always located at offset zero.
const PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::kReferenceQueue =
offsetof(SharedMetadata, queue);
const base::FilePath::CharType PersistentMemoryAllocator::kFileExtension[] =
FILE_PATH_LITERAL(".pma");
PersistentMemoryAllocator::Iterator::Iterator(
const PersistentMemoryAllocator* allocator)
: allocator_(allocator), last_record_(kReferenceQueue), record_count_(0) {}
PersistentMemoryAllocator::Iterator::Iterator(
const PersistentMemoryAllocator* allocator,
Reference starting_after)
: allocator_(allocator), last_record_(0), record_count_(0) {
Reset(starting_after);
}
void PersistentMemoryAllocator::Iterator::Reset() {
last_record_.store(kReferenceQueue, std::memory_order_relaxed);
record_count_.store(0, std::memory_order_relaxed);
}
void PersistentMemoryAllocator::Iterator::Reset(Reference starting_after) {
last_record_.store(starting_after, std::memory_order_relaxed);
record_count_.store(0, std::memory_order_relaxed);
// Ensure that the starting point is a valid, iterable block (meaning it can
// be read and has a non-zero "next" pointer).
const volatile BlockHeader* block =
allocator_->GetBlock(starting_after, 0, 0, false, false);
if (!block || block->next.load(std::memory_order_relaxed) == 0) {
NOTREACHED();
last_record_.store(kReferenceQueue, std::memory_order_release);
}
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetLast() {
Reference last = last_record_.load(std::memory_order_relaxed);
if (last == kReferenceQueue)
return kReferenceNull;
return last;
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNext(uint32_t* type_return) {
// Make a copy of the existing count of found-records, acquiring all changes
// made to the allocator, notably "freeptr" (see comment in loop for why
// the load of that value cannot be moved above here) that occurred during
// any previous runs of this method, including those by parallel threads
// that interrupted it. It pairs with the Release at the end of this method.
//
// Otherwise, if the compiler were to arrange the two loads such that
// "count" was fetched _after_ "freeptr" then it would be possible for
// this thread to be interrupted between them and other threads perform
// multiple allocations, make-iterables, and iterations (with the included
// increment of |record_count_|) culminating in the check at the bottom
// mistakenly determining that a loop exists. Isn't this stuff fun?
uint32_t count = record_count_.load(std::memory_order_acquire);
Reference last = last_record_.load(std::memory_order_acquire);
Reference next;
while (true) {
const volatile BlockHeader* block =
allocator_->GetBlock(last, 0, 0, true, false);
if (!block) // Invalid iterator state.
return kReferenceNull;
// The compiler and CPU can freely reorder all memory accesses on which
// there are no dependencies. It could, for example, move the load of
// "freeptr" to above this point because there are no explicit dependencies
// between it and "next". If it did, however, then another block could
// be queued after that but before the following load meaning there is
// one more queued block than the future "detect loop by having more
// blocks that could fit before freeptr" will allow.
//
// By "acquiring" the "next" value here, it's synchronized to the enqueue
// of the node which in turn is synchronized to the allocation (which sets
// freeptr). Thus, the scenario above cannot happen.
next = block->next.load(std::memory_order_acquire);
if (next == kReferenceQueue) // No next allocation in queue.
return kReferenceNull;
block = allocator_->GetBlock(next, 0, 0, false, false);
if (!block) { // Memory is corrupt.
allocator_->SetCorrupt();
return kReferenceNull;
}
// Update the "last_record" pointer to be the reference being returned.
// If it fails then another thread has already iterated past it so loop
// again. Failing will also load the existing value into "last" so there
// is no need to do another such load when the while-loop restarts. A
// "strong" compare-exchange is used because failing unnecessarily would
// mean repeating some fairly costly validations above.
if (last_record_.compare_exchange_strong(
last, next, std::memory_order_acq_rel, std::memory_order_acquire)) {
*type_return = block->type_id.load(std::memory_order_relaxed);
break;
}
}
// Memory corruption could cause a loop in the list. Such must be detected
// so as to not cause an infinite loop in the caller. This is done by simply
// making sure it doesn't iterate more times than the absolute maximum
// number of allocations that could have been made. Callers are likely
// to loop multiple times before it is detected but at least it stops.
const uint32_t freeptr = std::min(
allocator_->shared_meta()->freeptr.load(std::memory_order_relaxed),
allocator_->mem_size_);
const uint32_t max_records =
freeptr / (sizeof(BlockHeader) + kAllocAlignment);
if (count > max_records) {
allocator_->SetCorrupt();
return kReferenceNull;
}
// Increment the count and release the changes made above. It pairs with
// the Acquire at the top of this method. Note that this operation is not
// strictly synchonized with fetching of the object to return, which would
// have to be done inside the loop and is somewhat complicated to achieve.
// It does not matter if it falls behind temporarily so long as it never
// gets ahead.
record_count_.fetch_add(1, std::memory_order_release);
return next;
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNextOfType(uint32_t type_match) {
Reference ref;
uint32_t type_found;
while ((ref = GetNext(&type_found)) != 0) {
if (type_found == type_match)
return ref;
}
return kReferenceNull;
}
// static
bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
size_t size,
size_t page_size,
bool readonly) {
return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
(size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
(size % kAllocAlignment == 0 || readonly) &&
(page_size == 0 || size % page_size == 0 || readonly));
}
PersistentMemoryAllocator::PersistentMemoryAllocator(void* base,
size_t size,
size_t page_size,
uint64_t id,
base::StringPiece name,
bool readonly)
: PersistentMemoryAllocator(Memory(base, MEM_EXTERNAL),
size,
page_size,
id,
name,
readonly) {}
PersistentMemoryAllocator::PersistentMemoryAllocator(Memory memory,
size_t size,
size_t page_size,
uint64_t id,
base::StringPiece name,
bool readonly)
: mem_base_(static_cast<char*>(memory.base)),
mem_type_(memory.type),
mem_size_(static_cast<uint32_t>(size)),
mem_page_(static_cast<uint32_t>((page_size ? page_size : size))),
readonly_(readonly),
corrupt_(0),
allocs_histogram_(nullptr),
used_histogram_(nullptr),
errors_histogram_(nullptr) {
// These asserts ensure that the structures are 32/64-bit agnostic and meet
// all the requirements of use within the allocator. They access private
// definitions and so cannot be moved to the global scope.
static_assert(sizeof(PersistentMemoryAllocator::BlockHeader) == 16,
"struct is not portable across different natural word widths");
static_assert(sizeof(PersistentMemoryAllocator::SharedMetadata) == 56,
"struct is not portable across different natural word widths");
static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
"BlockHeader is not a multiple of kAllocAlignment");
static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
"SharedMetadata is not a multiple of kAllocAlignment");
static_assert(kReferenceQueue % kAllocAlignment == 0,
"\"queue\" is not aligned properly; must be at end of struct");
// Ensure that memory segment is of acceptable size.
CHECK(IsMemoryAcceptable(memory.base, size, page_size, readonly));
// These atomics operate inter-process and so must be lock-free. The local
// casts are to make sure it can be evaluated at compile time to a constant.
CHECK(((SharedMetadata*)0)->freeptr.is_lock_free());
CHECK(((SharedMetadata*)0)->flags.is_lock_free());
CHECK(((BlockHeader*)0)->next.is_lock_free());
CHECK(corrupt_.is_lock_free());
if (shared_meta()->cookie != kGlobalCookie) {
if (readonly) {
SetCorrupt();
return;
}
// This block is only executed when a completely new memory segment is
// being initialized. It's unshared and single-threaded...
volatile BlockHeader* const first_block =
reinterpret_cast<volatile BlockHeader*>(mem_base_ +
sizeof(SharedMetadata));
if (shared_meta()->cookie != 0 ||
shared_meta()->size != 0 ||
shared_meta()->version != 0 ||
shared_meta()->freeptr.load(std::memory_order_relaxed) != 0 ||
shared_meta()->flags.load(std::memory_order_relaxed) != 0 ||
shared_meta()->id != 0 ||
shared_meta()->name != 0 ||
shared_meta()->tailptr != 0 ||
shared_meta()->queue.cookie != 0 ||
shared_meta()->queue.next.load(std::memory_order_relaxed) != 0 ||
first_block->size != 0 ||
first_block->cookie != 0 ||
first_block->type_id.load(std::memory_order_relaxed) != 0 ||
first_block->next != 0) {
// ...or something malicious has been playing with the metadata.
SetCorrupt();
}
// This is still safe to do even if corruption has been detected.
shared_meta()->cookie = kGlobalCookie;
shared_meta()->size = mem_size_;
shared_meta()->page_size = mem_page_;
shared_meta()->version = kGlobalVersion;
shared_meta()->id = id;
shared_meta()->freeptr.store(sizeof(SharedMetadata),
std::memory_order_release);
// Set up the queue of iterable allocations.
shared_meta()->queue.size = sizeof(BlockHeader);
shared_meta()->queue.cookie = kBlockCookieQueue;
shared_meta()->queue.next.store(kReferenceQueue, std::memory_order_release);
shared_meta()->tailptr.store(kReferenceQueue, std::memory_order_release);
// Allocate space for the name so other processes can learn it.
if (!name.empty()) {
const size_t name_length = name.length() + 1;
shared_meta()->name = Allocate(name_length, 0);
char* name_cstr = GetAsArray<char>(shared_meta()->name, 0, name_length);
if (name_cstr)
memcpy(name_cstr, name.data(), name.length());
}
} else {
if (shared_meta()->size == 0 ||
shared_meta()->version == 0 ||
shared_meta()->freeptr.load(std::memory_order_relaxed) == 0 ||
shared_meta()->tailptr == 0 ||
shared_meta()->queue.cookie == 0 ||
shared_meta()->queue.next.load(std::memory_order_relaxed) == 0) {
SetCorrupt();
}
if (!readonly) {
// The allocator is attaching to a previously initialized segment of
// memory. If the initialization parameters differ, make the best of it
// by reducing the local construction parameters to match those of
// the actual memory area. This ensures that the local object never
// tries to write outside of the original bounds.
// Because the fields are const to ensure that no code other than the
// constructor makes changes to them as well as to give optimization
// hints to the compiler, it's necessary to const-cast them for changes
// here.
if (shared_meta()->size < mem_size_)
*const_cast<uint32_t*>(&mem_size_) = shared_meta()->size;
if (shared_meta()->page_size < mem_page_)
*const_cast<uint32_t*>(&mem_page_) = shared_meta()->page_size;
// Ensure that settings are still valid after the above adjustments.
if (!IsMemoryAcceptable(memory.base, mem_size_, mem_page_, readonly))
SetCorrupt();
}
}
}
PersistentMemoryAllocator::~PersistentMemoryAllocator() {
// It's strictly forbidden to do any memory access here in case there is
// some issue with the underlying memory segment. The "Local" allocator
// makes use of this to allow deletion of the segment on the heap from
// within its destructor.
}
uint64_t PersistentMemoryAllocator::Id() const {
return shared_meta()->id;
}
const char* PersistentMemoryAllocator::Name() const {
Reference name_ref = shared_meta()->name;
const char* name_cstr =
GetAsArray<char>(name_ref, 0, PersistentMemoryAllocator::kSizeAny);
if (!name_cstr)
return "";
size_t name_length = GetAllocSize(name_ref);
if (name_cstr[name_length - 1] != '\0') {
NOTREACHED();
SetCorrupt();
return "";
}
return name_cstr;
}
void PersistentMemoryAllocator::CreateTrackingHistograms(
base::StringPiece name) {
if (name.empty() || readonly_)
return;
std::string name_string = name.as_string();
DCHECK(!allocs_histogram_);
allocs_histogram_ = Histogram::FactoryGet(
"UMA.PersistentAllocator." + name_string + ".Allocs", 1, 10000, 50,
HistogramBase::kUmaTargetedHistogramFlag);
DCHECK(!used_histogram_);
used_histogram_ = LinearHistogram::FactoryGet(
"UMA.PersistentAllocator." + name_string + ".UsedPct", 1, 101, 21,
HistogramBase::kUmaTargetedHistogramFlag);
DCHECK(!errors_histogram_);
errors_histogram_ = SparseHistogram::FactoryGet(
"UMA.PersistentAllocator." + name_string + ".Errors",
HistogramBase::kUmaTargetedHistogramFlag);
}
size_t PersistentMemoryAllocator::used() const {
return std::min(shared_meta()->freeptr.load(std::memory_order_relaxed),
mem_size_);
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::GetAsReference(
const void* memory,
uint32_t type_id) const {
uintptr_t address = reinterpret_cast<uintptr_t>(memory);
if (address < reinterpret_cast<uintptr_t>(mem_base_))
return kReferenceNull;
uintptr_t offset = address - reinterpret_cast<uintptr_t>(mem_base_);
if (offset >= mem_size_ || offset < sizeof(BlockHeader))
return kReferenceNull;
Reference ref = static_cast<Reference>(offset) - sizeof(BlockHeader);
if (!GetBlockData(ref, type_id, kSizeAny))
return kReferenceNull;
return ref;
}
size_t PersistentMemoryAllocator::GetAllocSize(Reference ref) const {
const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
if (!block)
return 0;
uint32_t size = block->size;
// Header was verified by GetBlock() but a malicious actor could change
// the value between there and here. Check it again.
if (size <= sizeof(BlockHeader) || ref + size > mem_size_) {
SetCorrupt();
return 0;
}
return size - sizeof(BlockHeader);
}
uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
const volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
if (!block)
return 0;
return block->type_id.load(std::memory_order_relaxed);
}
bool PersistentMemoryAllocator::ChangeType(Reference ref,
uint32_t to_type_id,
uint32_t from_type_id) {
DCHECK(!readonly_);
volatile BlockHeader* const block = GetBlock(ref, 0, 0, false, false);
if (!block)
return false;
// This is a "strong" exchange because there is no loop that can retry in
// the wake of spurious failures possible with "weak" exchanges. Make this
// an "acquire-release" so no memory accesses can be reordered either before
// or after since changes based on type could happen on either side.
return block->type_id.compare_exchange_strong(from_type_id, to_type_id,
std::memory_order_acq_rel,
std::memory_order_acquire);
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
size_t req_size,
uint32_t type_id) {
Reference ref = AllocateImpl(req_size, type_id);
if (ref) {
// Success: Record this allocation in usage stats (if active).
if (allocs_histogram_)
allocs_histogram_->Add(static_cast<HistogramBase::Sample>(req_size));
} else {
// Failure: Record an allocation of zero for tracking.
if (allocs_histogram_)
allocs_histogram_->Add(0);
}
return ref;
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
size_t req_size,
uint32_t type_id) {
DCHECK(!readonly_);
// Validate req_size to ensure it won't overflow when used as 32-bit value.
if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
NOTREACHED();
return kReferenceNull;
}
// Round up the requested size, plus header, to the next allocation alignment.
uint32_t size = static_cast<uint32_t>(req_size + sizeof(BlockHeader));
size = (size + (kAllocAlignment - 1)) & ~(kAllocAlignment - 1);
if (size <= sizeof(BlockHeader) || size > mem_page_) {
NOTREACHED();
return kReferenceNull;
}
// Get the current start of unallocated memory. Other threads may
// update this at any time and cause us to retry these operations.
// This value should be treated as "const" to avoid confusion through
// the code below but recognize that any failed compare-exchange operation
// involving it will cause it to be loaded with a more recent value. The
// code should either exit or restart the loop in that case.
/* const */ uint32_t freeptr =
shared_meta()->freeptr.load(std::memory_order_acquire);
// Allocation is lockless so we do all our caculation and then, if saving
// indicates a change has occurred since we started, scrap everything and
// start over.
for (;;) {
if (IsCorrupt())
return kReferenceNull;
if (freeptr + size > mem_size_) {
SetFlag(&shared_meta()->flags, kFlagFull);
return kReferenceNull;
}
// Get pointer to the "free" block. If something has been allocated since
// the load of freeptr above, it is still safe as nothing will be written
// to that location until after the compare-exchange below.
volatile BlockHeader* const block = GetBlock(freeptr, 0, 0, false, true);
if (!block) {
SetCorrupt();
return kReferenceNull;
}
// An allocation cannot cross page boundaries. If it would, create a
// "wasted" block and begin again at the top of the next page. This
// area could just be left empty but we fill in the block header just
// for completeness sake.
const uint32_t page_free = mem_page_ - freeptr % mem_page_;
if (size > page_free) {
if (page_free <= sizeof(BlockHeader)) {
SetCorrupt();
return kReferenceNull;
}
const uint32_t new_freeptr = freeptr + page_free;
if (shared_meta()->freeptr.compare_exchange_strong(
freeptr, new_freeptr, std::memory_order_acq_rel,
std::memory_order_acquire)) {
block->size = page_free;
block->cookie = kBlockCookieWasted;
}
continue;
}
// Don't leave a slice at the end of a page too small for anything. This
// can result in an allocation up to two alignment-sizes greater than the
// minimum required by requested-size + header + alignment.
if (page_free - size < sizeof(BlockHeader) + kAllocAlignment)
size = page_free;
const uint32_t new_freeptr = freeptr + size;
if (new_freeptr > mem_size_) {
SetCorrupt();
return kReferenceNull;
}
// Save our work. Try again if another thread has completed an allocation
// while we were processing. A "weak" exchange would be permissable here
// because the code will just loop and try again but the above processing
// is significant so make the extra effort of a "strong" exchange.
if (!shared_meta()->freeptr.compare_exchange_strong(
freeptr, new_freeptr, std::memory_order_acq_rel,
std::memory_order_acquire)) {
continue;
}
// Given that all memory was zeroed before ever being given to an instance
// of this class and given that we only allocate in a monotomic fashion
// going forward, it must be that the newly allocated block is completely
// full of zeros. If we find anything in the block header that is NOT a
// zero then something must have previously run amuck through memory,
// writing beyond the allocated space and into unallocated space.
if (block->size != 0 ||
block->cookie != kBlockCookieFree ||
block->type_id.load(std::memory_order_relaxed) != 0 ||
block->next.load(std::memory_order_relaxed) != 0) {
SetCorrupt();
return kReferenceNull;
}
// Load information into the block header. There is no "release" of the
// data here because this memory can, currently, be seen only by the thread
// performing the allocation. When it comes time to share this, the thread
// will call MakeIterable() which does the release operation.
block->size = size;
block->cookie = kBlockCookieAllocated;
block->type_id.store(type_id, std::memory_order_relaxed);
return freeptr;
}
}
void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
uint32_t remaining = std::max(
mem_size_ - shared_meta()->freeptr.load(std::memory_order_relaxed),
(uint32_t)sizeof(BlockHeader));
meminfo->total = mem_size_;
meminfo->free = remaining - sizeof(BlockHeader);
}
void PersistentMemoryAllocator::MakeIterable(Reference ref) {
DCHECK(!readonly_);
if (IsCorrupt())
return;
volatile BlockHeader* block = GetBlock(ref, 0, 0, false, false);
if (!block) // invalid reference
return;
if (block->next.load(std::memory_order_acquire) != 0) // Already iterable.
return;
block->next.store(kReferenceQueue, std::memory_order_release); // New tail.
// Try to add this block to the tail of the queue. May take multiple tries.
// If so, tail will be automatically updated with a more recent value during
// compare-exchange operations.
uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
for (;;) {
// Acquire the current tail-pointer released by previous call to this
// method and validate it.
block = GetBlock(tail, 0, 0, true, false);
if (!block) {
SetCorrupt();
return;
}
// Try to insert the block at the tail of the queue. The tail node always
// has an existing value of kReferenceQueue; if that is somehow not the
// existing value then another thread has acted in the meantime. A "strong"
// exchange is necessary so the "else" block does not get executed when
// that is not actually the case (which can happen with a "weak" exchange).
uint32_t next = kReferenceQueue; // Will get replaced with existing value.
if (block->next.compare_exchange_strong(next, ref,
std::memory_order_acq_rel,
std::memory_order_acquire)) {
// Update the tail pointer to the new offset. If the "else" clause did
// not exist, then this could be a simple Release_Store to set the new
// value but because it does, it's possible that other threads could add
// one or more nodes at the tail before reaching this point. We don't
// have to check the return value because it either operates correctly
// or the exact same operation has already been done (by the "else"
// clause) on some other thread.
shared_meta()->tailptr.compare_exchange_strong(tail, ref,
std::memory_order_release,
std::memory_order_relaxed);
return;
} else {
// In the unlikely case that a thread crashed or was killed between the
// update of "next" and the update of "tailptr", it is necessary to
// perform the operation that would have been done. There's no explicit
// check for crash/kill which means that this operation may also happen
// even when the other thread is in perfect working order which is what
// necessitates the CompareAndSwap above.
shared_meta()->tailptr.compare_exchange_strong(tail, next,
std::memory_order_acq_rel,
std::memory_order_acquire);
}
}
}
// The "corrupted" state is held both locally and globally (shared). The
// shared flag can't be trusted since a malicious actor could overwrite it.
// Because corruption can be detected during read-only operations such as
// iteration, this method may be called by other "const" methods. In this
// case, it's safe to discard the constness and modify the local flag and
// maybe even the shared flag if the underlying data isn't actually read-only.
void PersistentMemoryAllocator::SetCorrupt() const {
if (!corrupt_.load(std::memory_order_relaxed) &&
!CheckFlag(
const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
kFlagCorrupt)) {
LOG(ERROR) << "Corruption detected in shared-memory segment.";
RecordError(kMemoryIsCorrupt);
}
corrupt_.store(true, std::memory_order_relaxed);
if (!readonly_) {
SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
kFlagCorrupt);
}
}
bool PersistentMemoryAllocator::IsCorrupt() const {
if (corrupt_.load(std::memory_order_relaxed) ||
CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
SetCorrupt(); // Make sure all indicators are set.
return true;
}
return false;
}
bool PersistentMemoryAllocator::IsFull() const {
return CheckFlag(&shared_meta()->flags, kFlagFull);
}
// Dereference a block |ref| and ensure that it's valid for the desired
// |type_id| and |size|. |special| indicates that we may try to access block
// headers not available to callers but still accessed by this module. By
// having internal dereferences go through this same function, the allocator
// is hardened against corruption.
const volatile PersistentMemoryAllocator::BlockHeader*
PersistentMemoryAllocator::GetBlock(Reference ref, uint32_t type_id,
uint32_t size, bool queue_ok,
bool free_ok) const {
// Validation of parameters.
if (ref < (queue_ok ? kReferenceQueue : sizeof(SharedMetadata)))
return nullptr;
if (ref % kAllocAlignment != 0)
return nullptr;
size += sizeof(BlockHeader);
if (ref + size > mem_size_)
return nullptr;
// Validation of referenced block-header.
if (!free_ok) {
uint32_t freeptr = std::min(
shared_meta()->freeptr.load(std::memory_order_relaxed), mem_size_);
if (ref + size > freeptr)
return nullptr;
const volatile BlockHeader* const block =
reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref);
if (block->size < size)
return nullptr;
if (ref + block->size > freeptr)
return nullptr;
if (ref != kReferenceQueue && block->cookie != kBlockCookieAllocated)
return nullptr;
if (type_id != 0 &&
block->type_id.load(std::memory_order_relaxed) != type_id) {
return nullptr;
}
}
// Return pointer to block data.
return reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref);
}
void PersistentMemoryAllocator::RecordError(int error) const {
if (errors_histogram_)
errors_histogram_->Add(error);
}
const volatile void* PersistentMemoryAllocator::GetBlockData(
Reference ref,
uint32_t type_id,
uint32_t size) const {
DCHECK(size > 0);
const volatile BlockHeader* block =
GetBlock(ref, type_id, size, false, false);
if (!block)
return nullptr;
return reinterpret_cast<const volatile char*>(block) + sizeof(BlockHeader);
}
void PersistentMemoryAllocator::UpdateTrackingHistograms() {
DCHECK(!readonly_);
if (used_histogram_) {
MemoryInfo meminfo;
GetMemoryInfo(&meminfo);
HistogramBase::Sample used_percent = static_cast<HistogramBase::Sample>(
((meminfo.total - meminfo.free) * 100ULL / meminfo.total));
used_histogram_->Add(used_percent);
}
}
//----- LocalPersistentMemoryAllocator -----------------------------------------
LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
size_t size,
uint64_t id,
base::StringPiece name)
: PersistentMemoryAllocator(AllocateLocalMemory(size),
size, 0, id, name, false) {}
LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
DeallocateLocalMemory(const_cast<char*>(mem_base_), mem_size_, mem_type_);
}
// static
PersistentMemoryAllocator::Memory
LocalPersistentMemoryAllocator::AllocateLocalMemory(size_t size) {
void* address;
#if defined(OS_WIN)
address =
::VirtualAlloc(nullptr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (address)
return Memory(address, MEM_VIRTUAL);
UMA_HISTOGRAM_SPARSE_SLOWLY("UMA.LocalPersistentMemoryAllocator.Failures.Win",
::GetLastError());
#elif defined(OS_POSIX)
// MAP_ANON is deprecated on Linux but MAP_ANONYMOUS is not universal on Mac.
// MAP_SHARED is not available on Linux <2.4 but required on Mac.
address = ::mmap(nullptr, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED, -1, 0);
if (address != MAP_FAILED)
return Memory(address, MEM_VIRTUAL);
UMA_HISTOGRAM_SPARSE_SLOWLY(
"UMA.LocalPersistentMemoryAllocator.Failures.Posix", errno);
#else
#error This architecture is not (yet) supported.
#endif
// As a last resort, just allocate the memory from the heap. This will
// achieve the same basic result but the acquired memory has to be
// explicitly zeroed and thus realized immediately (i.e. all pages are
// added to the process now istead of only when first accessed).
address = malloc(size);
DPCHECK(address);
memset(address, 0, size);
return Memory(address, MEM_MALLOC);
}
// static
void LocalPersistentMemoryAllocator::DeallocateLocalMemory(void* memory,
size_t size,
MemoryType type) {
if (type == MEM_MALLOC) {
free(memory);
return;
}
DCHECK_EQ(MEM_VIRTUAL, type);
#if defined(OS_WIN)
BOOL success = ::VirtualFree(memory, 0, MEM_DECOMMIT);
DCHECK(success);
#elif defined(OS_POSIX)
int result = ::munmap(memory, size);
DCHECK_EQ(0, result);
#else
#error This architecture is not (yet) supported.
#endif
}
//----- SharedPersistentMemoryAllocator ----------------------------------------
SharedPersistentMemoryAllocator::SharedPersistentMemoryAllocator(
std::unique_ptr<SharedMemory> memory,
uint64_t id,
base::StringPiece name,
bool read_only)
: PersistentMemoryAllocator(
Memory(static_cast<uint8_t*>(memory->memory()), MEM_SHARED),
memory->mapped_size(),
0,
id,
name,
read_only),
shared_memory_(std::move(memory)) {}
SharedPersistentMemoryAllocator::~SharedPersistentMemoryAllocator() {}
// static
bool SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
const SharedMemory& memory) {
return IsMemoryAcceptable(memory.memory(), memory.mapped_size(), 0, false);
}
#if !defined(OS_NACL)
//----- FilePersistentMemoryAllocator ------------------------------------------
FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
std::unique_ptr<MemoryMappedFile> file,
size_t max_size,
uint64_t id,
base::StringPiece name,
bool read_only)
: PersistentMemoryAllocator(
Memory(const_cast<uint8_t*>(file->data()), MEM_FILE),
max_size != 0 ? max_size : file->length(),
0,
id,
name,
read_only),
mapped_file_(std::move(file)) {}
FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() {}
// static
bool FilePersistentMemoryAllocator::IsFileAcceptable(
const MemoryMappedFile& file,
bool read_only) {
return IsMemoryAcceptable(file.data(), file.length(), 0, read_only);
}
#endif // !defined(OS_NACL)
} // namespace base
|