1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/sparse_histogram.h"
#include <memory>
#include <string>
#include "base/metrics/histogram_base.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/histogram_samples.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/metrics/sample_map.h"
#include "base/metrics/statistics_recorder.h"
#include "base/pickle.h"
#include "base/strings/stringprintf.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
// Test parameter indicates if a persistent memory allocator should be used
// for histogram allocation. False will allocate histograms from the process
// heap.
class SparseHistogramTest : public testing::TestWithParam<bool> {
protected:
const int32_t kAllocatorMemorySize = 8 << 20; // 8 MiB
SparseHistogramTest() : use_persistent_histogram_allocator_(GetParam()) {}
void SetUp() override {
if (use_persistent_histogram_allocator_)
CreatePersistentMemoryAllocator();
// Each test will have a clean state (no Histogram / BucketRanges
// registered).
InitializeStatisticsRecorder();
}
void TearDown() override {
if (allocator_) {
ASSERT_FALSE(allocator_->IsFull());
ASSERT_FALSE(allocator_->IsCorrupt());
}
UninitializeStatisticsRecorder();
DestroyPersistentMemoryAllocator();
}
void InitializeStatisticsRecorder() {
DCHECK(!statistics_recorder_);
statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting();
}
void UninitializeStatisticsRecorder() {
statistics_recorder_.reset();
}
void CreatePersistentMemoryAllocator() {
// By getting the results-histogram before any persistent allocator
// is attached, that histogram is guaranteed not to be stored in
// any persistent memory segment (which simplifies some tests).
GlobalHistogramAllocator::GetCreateHistogramResultHistogram();
GlobalHistogramAllocator::CreateWithLocalMemory(
kAllocatorMemorySize, 0, "SparseHistogramAllocatorTest");
allocator_ = GlobalHistogramAllocator::Get()->memory_allocator();
}
void DestroyPersistentMemoryAllocator() {
allocator_ = nullptr;
GlobalHistogramAllocator::ReleaseForTesting();
}
std::unique_ptr<SparseHistogram> NewSparseHistogram(const std::string& name) {
return std::unique_ptr<SparseHistogram>(new SparseHistogram(name));
}
const bool use_persistent_histogram_allocator_;
std::unique_ptr<StatisticsRecorder> statistics_recorder_;
PersistentMemoryAllocator* allocator_ = nullptr;
private:
DISALLOW_COPY_AND_ASSIGN(SparseHistogramTest);
};
// Run all HistogramTest cases with both heap and persistent memory.
INSTANTIATE_TEST_CASE_P(HeapAndPersistent,
SparseHistogramTest,
testing::Bool());
TEST_P(SparseHistogramTest, BasicTest) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->Add(100);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(1, snapshot1->TotalCount());
EXPECT_EQ(1, snapshot1->GetCount(100));
histogram->Add(100);
histogram->Add(101);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(3, snapshot2->TotalCount());
EXPECT_EQ(2, snapshot2->GetCount(100));
EXPECT_EQ(1, snapshot2->GetCount(101));
}
TEST_P(SparseHistogramTest, BasicTestAddCount) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->AddCount(100, 15);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(15, snapshot1->TotalCount());
EXPECT_EQ(15, snapshot1->GetCount(100));
histogram->AddCount(100, 15);
histogram->AddCount(101, 25);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(55, snapshot2->TotalCount());
EXPECT_EQ(30, snapshot2->GetCount(100));
EXPECT_EQ(25, snapshot2->GetCount(101));
}
TEST_P(SparseHistogramTest, AddCount_LargeValuesDontOverflow) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
EXPECT_EQ(0, snapshot->TotalCount());
EXPECT_EQ(0, snapshot->sum());
histogram->AddCount(1000000000, 15);
std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
EXPECT_EQ(15, snapshot1->TotalCount());
EXPECT_EQ(15, snapshot1->GetCount(1000000000));
histogram->AddCount(1000000000, 15);
histogram->AddCount(1010000000, 25);
std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
EXPECT_EQ(55, snapshot2->TotalCount());
EXPECT_EQ(30, snapshot2->GetCount(1000000000));
EXPECT_EQ(25, snapshot2->GetCount(1010000000));
EXPECT_EQ(55250000000LL, snapshot2->sum());
}
TEST_P(SparseHistogramTest, MacroBasicTest) {
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 200);
UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);
StatisticsRecorder::Histograms histograms;
StatisticsRecorder::GetHistograms(&histograms);
ASSERT_EQ(1U, histograms.size());
HistogramBase* sparse_histogram = histograms[0];
EXPECT_EQ(SPARSE_HISTOGRAM, sparse_histogram->GetHistogramType());
EXPECT_EQ("Sparse", sparse_histogram->histogram_name());
EXPECT_EQ(
HistogramBase::kUmaTargetedHistogramFlag |
(use_persistent_histogram_allocator_ ? HistogramBase::kIsPersistent
: 0),
sparse_histogram->flags());
std::unique_ptr<HistogramSamples> samples =
sparse_histogram->SnapshotSamples();
EXPECT_EQ(3, samples->TotalCount());
EXPECT_EQ(2, samples->GetCount(100));
EXPECT_EQ(1, samples->GetCount(200));
}
TEST_P(SparseHistogramTest, MacroInLoopTest) {
// Unlike the macros in histogram.h, SparseHistogram macros can have a
// variable as histogram name.
for (int i = 0; i < 2; i++) {
std::string name = StringPrintf("Sparse%d", i + 1);
UMA_HISTOGRAM_SPARSE_SLOWLY(name, 100);
}
StatisticsRecorder::Histograms histograms;
StatisticsRecorder::GetHistograms(&histograms);
ASSERT_EQ(2U, histograms.size());
std::string name1 = histograms[0]->histogram_name();
std::string name2 = histograms[1]->histogram_name();
EXPECT_TRUE(("Sparse1" == name1 && "Sparse2" == name2) ||
("Sparse2" == name1 && "Sparse1" == name2));
}
TEST_P(SparseHistogramTest, Serialize) {
std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
histogram->SetFlags(HistogramBase::kIPCSerializationSourceFlag);
Pickle pickle;
histogram->SerializeInfo(&pickle);
PickleIterator iter(pickle);
int type;
EXPECT_TRUE(iter.ReadInt(&type));
EXPECT_EQ(SPARSE_HISTOGRAM, type);
std::string name;
EXPECT_TRUE(iter.ReadString(&name));
EXPECT_EQ("Sparse", name);
int flag;
EXPECT_TRUE(iter.ReadInt(&flag));
EXPECT_EQ(HistogramBase::kIPCSerializationSourceFlag, flag);
// No more data in the pickle.
EXPECT_FALSE(iter.SkipBytes(1));
}
// Ensure that race conditions that cause multiple, identical sparse histograms
// to be created will safely resolve to a single one.
TEST_P(SparseHistogramTest, DuplicationSafety) {
const char histogram_name[] = "Duplicated";
size_t histogram_count = StatisticsRecorder::GetHistogramCount();
// Create a histogram that we will later duplicate.
HistogramBase* original =
SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
++histogram_count;
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
original->Add(1);
// Create a duplicate. This has to happen differently depending on where the
// memory is taken from.
if (use_persistent_histogram_allocator_) {
// To allocate from persistent memory, clear the last_created reference in
// the GlobalHistogramAllocator. This will cause an Import to recreate
// the just-created histogram which will then be released as a duplicate.
GlobalHistogramAllocator::Get()->ClearLastCreatedReferenceForTesting();
// Creating a different histogram will first do an Import to ensure it
// hasn't been created elsewhere, triggering the duplication and release.
SparseHistogram::FactoryGet("something.new", HistogramBase::kNoFlags);
++histogram_count;
} else {
// To allocate from the heap, just call the (private) constructor directly.
// Delete it immediately like would have happened within FactoryGet();
std::unique_ptr<SparseHistogram> something =
NewSparseHistogram(histogram_name);
DCHECK_NE(original, something.get());
}
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
// Re-creating the histogram via FactoryGet() will return the same one.
HistogramBase* duplicate =
SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
DCHECK_EQ(original, duplicate);
DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
duplicate->Add(2);
// Ensure that original histograms are still cross-functional.
original->Add(2);
duplicate->Add(1);
std::unique_ptr<HistogramSamples> snapshot_orig = original->SnapshotSamples();
std::unique_ptr<HistogramSamples> snapshot_dup = duplicate->SnapshotSamples();
DCHECK_EQ(2, snapshot_orig->GetCount(2));
DCHECK_EQ(2, snapshot_dup->GetCount(1));
}
TEST_P(SparseHistogramTest, FactoryTime) {
const int kTestCreateCount = 1 << 10; // Must be power-of-2.
const int kTestLookupCount = 100000;
const int kTestAddCount = 100000;
// Create all histogram names in advance for accurate timing below.
std::vector<std::string> histogram_names;
for (int i = 0; i < kTestCreateCount; ++i) {
histogram_names.push_back(
StringPrintf("TestHistogram.%d", i % kTestCreateCount));
}
// Calculate cost of creating histograms.
TimeTicks create_start = TimeTicks::Now();
for (int i = 0; i < kTestCreateCount; ++i)
SparseHistogram::FactoryGet(histogram_names[i], HistogramBase::kNoFlags);
TimeDelta create_ticks = TimeTicks::Now() - create_start;
int64_t create_ms = create_ticks.InMilliseconds();
VLOG(1) << kTestCreateCount << " histogram creations took " << create_ms
<< "ms or about "
<< (create_ms * 1000000) / kTestCreateCount
<< "ns each.";
// Calculate cost of looking up existing histograms.
TimeTicks lookup_start = TimeTicks::Now();
for (int i = 0; i < kTestLookupCount; ++i) {
// 6007 is co-prime with kTestCreateCount and so will do lookups in an
// order less likely to be cacheable (but still hit them all) should the
// underlying storage use the exact histogram name as the key.
const int i_mult = 6007;
static_assert(i_mult < INT_MAX / kTestCreateCount, "Multiplier too big");
int index = (i * i_mult) & (kTestCreateCount - 1);
SparseHistogram::FactoryGet(histogram_names[index],
HistogramBase::kNoFlags);
}
TimeDelta lookup_ticks = TimeTicks::Now() - lookup_start;
int64_t lookup_ms = lookup_ticks.InMilliseconds();
VLOG(1) << kTestLookupCount << " histogram lookups took " << lookup_ms
<< "ms or about "
<< (lookup_ms * 1000000) / kTestLookupCount
<< "ns each.";
// Calculate cost of accessing histograms.
HistogramBase* histogram =
SparseHistogram::FactoryGet(histogram_names[0], HistogramBase::kNoFlags);
ASSERT_TRUE(histogram);
TimeTicks add_start = TimeTicks::Now();
for (int i = 0; i < kTestAddCount; ++i)
histogram->Add(i & 127);
TimeDelta add_ticks = TimeTicks::Now() - add_start;
int64_t add_ms = add_ticks.InMilliseconds();
VLOG(1) << kTestAddCount << " histogram adds took " << add_ms
<< "ms or about "
<< (add_ms * 1000000) / kTestAddCount
<< "ns each.";
}
} // namespace base
|