1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process.h"
#include <errno.h>
#include <stdint.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include "base/debug/activity_tracker.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/kill.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "build/build_config.h"
#if defined(OS_MACOSX)
#include <sys/event.h>
#endif
namespace {
#if !defined(OS_NACL_NONSFI)
bool WaitpidWithTimeout(base::ProcessHandle handle,
int* status,
base::TimeDelta wait) {
// This POSIX version of this function only guarantees that we wait no less
// than |wait| for the process to exit. The child process may
// exit sometime before the timeout has ended but we may still block for up
// to 256 milliseconds after the fact.
//
// waitpid() has no direct support on POSIX for specifying a timeout, you can
// either ask it to block indefinitely or return immediately (WNOHANG).
// When a child process terminates a SIGCHLD signal is sent to the parent.
// Catching this signal would involve installing a signal handler which may
// affect other parts of the application and would be difficult to debug.
//
// Our strategy is to call waitpid() once up front to check if the process
// has already exited, otherwise to loop for |wait|, sleeping for
// at most 256 milliseconds each time using usleep() and then calling
// waitpid(). The amount of time we sleep starts out at 1 milliseconds, and
// we double it every 4 sleep cycles.
//
// usleep() is speced to exit if a signal is received for which a handler
// has been installed. This means that when a SIGCHLD is sent, it will exit
// depending on behavior external to this function.
//
// This function is used primarily for unit tests, if we want to use it in
// the application itself it would probably be best to examine other routes.
if (wait == base::TimeDelta::Max()) {
return HANDLE_EINTR(waitpid(handle, status, 0)) > 0;
}
pid_t ret_pid = HANDLE_EINTR(waitpid(handle, status, WNOHANG));
static const int64_t kMaxSleepInMicroseconds = 1 << 18; // ~256 milliseconds.
int64_t max_sleep_time_usecs = 1 << 10; // ~1 milliseconds.
int64_t double_sleep_time = 0;
// If the process hasn't exited yet, then sleep and try again.
base::TimeTicks wakeup_time = base::TimeTicks::Now() + wait;
while (ret_pid == 0) {
base::TimeTicks now = base::TimeTicks::Now();
if (now > wakeup_time)
break;
// Guaranteed to be non-negative!
int64_t sleep_time_usecs = (wakeup_time - now).InMicroseconds();
// Sleep for a bit while we wait for the process to finish.
if (sleep_time_usecs > max_sleep_time_usecs)
sleep_time_usecs = max_sleep_time_usecs;
// usleep() will return 0 and set errno to EINTR on receipt of a signal
// such as SIGCHLD.
usleep(sleep_time_usecs);
ret_pid = HANDLE_EINTR(waitpid(handle, status, WNOHANG));
if ((max_sleep_time_usecs < kMaxSleepInMicroseconds) &&
(double_sleep_time++ % 4 == 0)) {
max_sleep_time_usecs *= 2;
}
}
return ret_pid > 0;
}
#if defined(OS_MACOSX)
// Using kqueue on Mac so that we can wait on non-child processes.
// We can't use kqueues on child processes because we need to reap
// our own children using wait.
static bool WaitForSingleNonChildProcess(base::ProcessHandle handle,
base::TimeDelta wait) {
DCHECK_GT(handle, 0);
DCHECK_GT(wait, base::TimeDelta());
base::ScopedFD kq(kqueue());
if (!kq.is_valid()) {
DPLOG(ERROR) << "kqueue";
return false;
}
struct kevent change = {0};
EV_SET(&change, handle, EVFILT_PROC, EV_ADD, NOTE_EXIT, 0, NULL);
int result = HANDLE_EINTR(kevent(kq.get(), &change, 1, NULL, 0, NULL));
if (result == -1) {
if (errno == ESRCH) {
// If the process wasn't found, it must be dead.
return true;
}
DPLOG(ERROR) << "kevent (setup " << handle << ")";
return false;
}
// Keep track of the elapsed time to be able to restart kevent if it's
// interrupted.
bool wait_forever = (wait == base::TimeDelta::Max());
base::TimeDelta remaining_delta;
base::TimeTicks deadline;
if (!wait_forever) {
remaining_delta = wait;
deadline = base::TimeTicks::Now() + remaining_delta;
}
result = -1;
struct kevent event = {0};
while (wait_forever || remaining_delta > base::TimeDelta()) {
struct timespec remaining_timespec;
struct timespec* remaining_timespec_ptr;
if (wait_forever) {
remaining_timespec_ptr = NULL;
} else {
remaining_timespec = remaining_delta.ToTimeSpec();
remaining_timespec_ptr = &remaining_timespec;
}
result = kevent(kq.get(), NULL, 0, &event, 1, remaining_timespec_ptr);
if (result == -1 && errno == EINTR) {
if (!wait_forever) {
remaining_delta = deadline - base::TimeTicks::Now();
}
result = 0;
} else {
break;
}
}
if (result < 0) {
DPLOG(ERROR) << "kevent (wait " << handle << ")";
return false;
} else if (result > 1) {
DLOG(ERROR) << "kevent (wait " << handle << "): unexpected result "
<< result;
return false;
} else if (result == 0) {
// Timed out.
return false;
}
DCHECK_EQ(result, 1);
if (event.filter != EVFILT_PROC ||
(event.fflags & NOTE_EXIT) == 0 ||
event.ident != static_cast<uintptr_t>(handle)) {
DLOG(ERROR) << "kevent (wait " << handle
<< "): unexpected event: filter=" << event.filter
<< ", fflags=" << event.fflags
<< ", ident=" << event.ident;
return false;
}
return true;
}
#endif // OS_MACOSX
bool WaitForExitWithTimeoutImpl(base::ProcessHandle handle,
int* exit_code,
base::TimeDelta timeout) {
base::ProcessHandle parent_pid = base::GetParentProcessId(handle);
base::ProcessHandle our_pid = base::GetCurrentProcessHandle();
if (parent_pid != our_pid) {
#if defined(OS_MACOSX)
// On Mac we can wait on non child processes.
return WaitForSingleNonChildProcess(handle, timeout);
#else
// Currently on Linux we can't handle non child processes.
NOTIMPLEMENTED();
#endif // OS_MACOSX
}
int status;
if (!WaitpidWithTimeout(handle, &status, timeout))
return false;
if (WIFSIGNALED(status)) {
if (exit_code)
*exit_code = -1;
return true;
}
if (WIFEXITED(status)) {
if (exit_code)
*exit_code = WEXITSTATUS(status);
return true;
}
return false;
}
#endif // !defined(OS_NACL_NONSFI)
} // namespace
namespace base {
Process::Process(ProcessHandle handle) : process_(handle) {
}
Process::~Process() {
}
Process::Process(Process&& other) : process_(other.process_) {
other.Close();
}
Process& Process::operator=(Process&& other) {
DCHECK_NE(this, &other);
process_ = other.process_;
other.Close();
return *this;
}
// static
Process Process::Current() {
return Process(GetCurrentProcessHandle());
}
// static
Process Process::Open(ProcessId pid) {
if (pid == GetCurrentProcId())
return Current();
// On POSIX process handles are the same as PIDs.
return Process(pid);
}
// static
Process Process::OpenWithExtraPrivileges(ProcessId pid) {
// On POSIX there are no privileges to set.
return Open(pid);
}
// static
Process Process::DeprecatedGetProcessFromHandle(ProcessHandle handle) {
DCHECK_NE(handle, GetCurrentProcessHandle());
return Process(handle);
}
#if !defined(OS_LINUX) && !defined(OS_MACOSX)
// static
bool Process::CanBackgroundProcesses() {
return false;
}
#endif // !defined(OS_LINUX) && !defined(OS_MACOSX)
bool Process::IsValid() const {
return process_ != kNullProcessHandle;
}
ProcessHandle Process::Handle() const {
return process_;
}
Process Process::Duplicate() const {
if (is_current())
return Current();
return Process(process_);
}
ProcessId Process::Pid() const {
DCHECK(IsValid());
return GetProcId(process_);
}
bool Process::is_current() const {
return process_ == GetCurrentProcessHandle();
}
void Process::Close() {
process_ = kNullProcessHandle;
// if the process wasn't terminated (so we waited) or the state
// wasn't already collected w/ a wait from process_utils, we're gonna
// end up w/ a zombie when it does finally exit.
}
#if !defined(OS_NACL_NONSFI)
bool Process::Terminate(int exit_code, bool wait) const {
// exit_code isn't supportable.
DCHECK(IsValid());
CHECK_GT(process_, 0);
bool result = kill(process_, SIGTERM) == 0;
if (result && wait) {
int tries = 60;
if (RunningOnValgrind()) {
// Wait for some extra time when running under Valgrind since the child
// processes may take some time doing leak checking.
tries *= 2;
}
unsigned sleep_ms = 4;
// The process may not end immediately due to pending I/O
bool exited = false;
while (tries-- > 0) {
pid_t pid = HANDLE_EINTR(waitpid(process_, NULL, WNOHANG));
if (pid == process_) {
exited = true;
break;
}
if (pid == -1) {
if (errno == ECHILD) {
// The wait may fail with ECHILD if another process also waited for
// the same pid, causing the process state to get cleaned up.
exited = true;
break;
}
DPLOG(ERROR) << "Error waiting for process " << process_;
}
usleep(sleep_ms * 1000);
const unsigned kMaxSleepMs = 1000;
if (sleep_ms < kMaxSleepMs)
sleep_ms *= 2;
}
// If we're waiting and the child hasn't died by now, force it
// with a SIGKILL.
if (!exited)
result = kill(process_, SIGKILL) == 0;
}
if (!result)
DPLOG(ERROR) << "Unable to terminate process " << process_;
return result;
}
#endif // !defined(OS_NACL_NONSFI)
bool Process::WaitForExit(int* exit_code) const {
return WaitForExitWithTimeout(TimeDelta::Max(), exit_code);
}
bool Process::WaitForExitWithTimeout(TimeDelta timeout, int* exit_code) const {
// Record the event that this thread is blocking upon (for hang diagnosis).
base::debug::ScopedProcessWaitActivity process_activity(this);
return WaitForExitWithTimeoutImpl(Handle(), exit_code, timeout);
}
#if !defined(OS_LINUX) && !defined(OS_MACOSX)
bool Process::IsProcessBackgrounded() const {
// See SetProcessBackgrounded().
DCHECK(IsValid());
return false;
}
bool Process::SetProcessBackgrounded(bool value) {
// Not implemented for POSIX systems other than Linux and Mac. With POSIX, if
// we were to lower the process priority we wouldn't be able to raise it back
// to its initial priority.
NOTIMPLEMENTED();
return false;
}
#endif // !defined(OS_LINUX) && !defined(OS_MACOSX)
int Process::GetPriority() const {
DCHECK(IsValid());
return getpriority(PRIO_PROCESS, process_);
}
} // namespace base
|