1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/macros.h"
#include "base/memory/singleton.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/trace_event/trace_event_synthetic_delay.h"
namespace {
const int kMaxSyntheticDelays = 32;
} // namespace
namespace base {
namespace trace_event {
TraceEventSyntheticDelayClock::TraceEventSyntheticDelayClock() {}
TraceEventSyntheticDelayClock::~TraceEventSyntheticDelayClock() {}
class TraceEventSyntheticDelayRegistry : public TraceEventSyntheticDelayClock {
public:
static TraceEventSyntheticDelayRegistry* GetInstance();
TraceEventSyntheticDelay* GetOrCreateDelay(const char* name);
void ResetAllDelays();
// TraceEventSyntheticDelayClock implementation.
TimeTicks Now() override;
private:
TraceEventSyntheticDelayRegistry();
friend struct DefaultSingletonTraits<TraceEventSyntheticDelayRegistry>;
Lock lock_;
TraceEventSyntheticDelay delays_[kMaxSyntheticDelays];
TraceEventSyntheticDelay dummy_delay_;
subtle::Atomic32 delay_count_;
DISALLOW_COPY_AND_ASSIGN(TraceEventSyntheticDelayRegistry);
};
TraceEventSyntheticDelay::TraceEventSyntheticDelay()
: mode_(STATIC), begin_count_(0), trigger_count_(0), clock_(NULL) {}
TraceEventSyntheticDelay::~TraceEventSyntheticDelay() {}
TraceEventSyntheticDelay* TraceEventSyntheticDelay::Lookup(
const std::string& name) {
return TraceEventSyntheticDelayRegistry::GetInstance()->GetOrCreateDelay(
name.c_str());
}
void TraceEventSyntheticDelay::Initialize(
const std::string& name,
TraceEventSyntheticDelayClock* clock) {
name_ = name;
clock_ = clock;
}
void TraceEventSyntheticDelay::SetTargetDuration(TimeDelta target_duration) {
AutoLock lock(lock_);
target_duration_ = target_duration;
trigger_count_ = 0;
begin_count_ = 0;
}
void TraceEventSyntheticDelay::SetMode(Mode mode) {
AutoLock lock(lock_);
mode_ = mode;
}
void TraceEventSyntheticDelay::SetClock(TraceEventSyntheticDelayClock* clock) {
AutoLock lock(lock_);
clock_ = clock;
}
void TraceEventSyntheticDelay::Begin() {
// Note that we check for a non-zero target duration without locking to keep
// things quick for the common case when delays are disabled. Since the delay
// calculation is done with a lock held, it will always be correct. The only
// downside of this is that we may fail to apply some delays when the target
// duration changes.
ANNOTATE_BENIGN_RACE(&target_duration_, "Synthetic delay duration");
if (!target_duration_.ToInternalValue())
return;
TimeTicks start_time = clock_->Now();
{
AutoLock lock(lock_);
if (++begin_count_ != 1)
return;
end_time_ = CalculateEndTimeLocked(start_time);
}
}
void TraceEventSyntheticDelay::BeginParallel(TimeTicks* out_end_time) {
// See note in Begin().
ANNOTATE_BENIGN_RACE(&target_duration_, "Synthetic delay duration");
if (!target_duration_.ToInternalValue()) {
*out_end_time = TimeTicks();
return;
}
TimeTicks start_time = clock_->Now();
{
AutoLock lock(lock_);
*out_end_time = CalculateEndTimeLocked(start_time);
}
}
void TraceEventSyntheticDelay::End() {
// See note in Begin().
ANNOTATE_BENIGN_RACE(&target_duration_, "Synthetic delay duration");
if (!target_duration_.ToInternalValue())
return;
TimeTicks end_time;
{
AutoLock lock(lock_);
if (!begin_count_ || --begin_count_ != 0)
return;
end_time = end_time_;
}
if (!end_time.is_null())
ApplyDelay(end_time);
}
void TraceEventSyntheticDelay::EndParallel(TimeTicks end_time) {
if (!end_time.is_null())
ApplyDelay(end_time);
}
TimeTicks TraceEventSyntheticDelay::CalculateEndTimeLocked(
TimeTicks start_time) {
if (mode_ == ONE_SHOT && trigger_count_++)
return TimeTicks();
else if (mode_ == ALTERNATING && trigger_count_++ % 2)
return TimeTicks();
return start_time + target_duration_;
}
void TraceEventSyntheticDelay::ApplyDelay(TimeTicks end_time) {
TRACE_EVENT0("synthetic_delay", name_.c_str());
while (clock_->Now() < end_time) {
// Busy loop.
}
}
TraceEventSyntheticDelayRegistry*
TraceEventSyntheticDelayRegistry::GetInstance() {
return Singleton<
TraceEventSyntheticDelayRegistry,
LeakySingletonTraits<TraceEventSyntheticDelayRegistry> >::get();
}
TraceEventSyntheticDelayRegistry::TraceEventSyntheticDelayRegistry()
: delay_count_(0) {}
TraceEventSyntheticDelay* TraceEventSyntheticDelayRegistry::GetOrCreateDelay(
const char* name) {
// Try to find an existing delay first without locking to make the common case
// fast.
int delay_count = subtle::Acquire_Load(&delay_count_);
for (int i = 0; i < delay_count; ++i) {
if (!strcmp(name, delays_[i].name_.c_str()))
return &delays_[i];
}
AutoLock lock(lock_);
delay_count = subtle::Acquire_Load(&delay_count_);
for (int i = 0; i < delay_count; ++i) {
if (!strcmp(name, delays_[i].name_.c_str()))
return &delays_[i];
}
DCHECK(delay_count < kMaxSyntheticDelays)
<< "must increase kMaxSyntheticDelays";
if (delay_count >= kMaxSyntheticDelays)
return &dummy_delay_;
delays_[delay_count].Initialize(std::string(name), this);
subtle::Release_Store(&delay_count_, delay_count + 1);
return &delays_[delay_count];
}
TimeTicks TraceEventSyntheticDelayRegistry::Now() {
return TimeTicks::Now();
}
void TraceEventSyntheticDelayRegistry::ResetAllDelays() {
AutoLock lock(lock_);
int delay_count = subtle::Acquire_Load(&delay_count_);
for (int i = 0; i < delay_count; ++i) {
delays_[i].SetTargetDuration(TimeDelta());
delays_[i].SetClock(this);
}
}
void ResetTraceEventSyntheticDelays() {
TraceEventSyntheticDelayRegistry::GetInstance()->ResetAllDelays();
}
} // namespace trace_event
} // namespace base
namespace trace_event_internal {
ScopedSyntheticDelay::ScopedSyntheticDelay(const char* name,
base::subtle::AtomicWord* impl_ptr)
: delay_impl_(GetOrCreateDelay(name, impl_ptr)) {
delay_impl_->BeginParallel(&end_time_);
}
ScopedSyntheticDelay::~ScopedSyntheticDelay() {
delay_impl_->EndParallel(end_time_);
}
base::trace_event::TraceEventSyntheticDelay* GetOrCreateDelay(
const char* name,
base::subtle::AtomicWord* impl_ptr) {
base::trace_event::TraceEventSyntheticDelay* delay_impl =
reinterpret_cast<base::trace_event::TraceEventSyntheticDelay*>(
base::subtle::Acquire_Load(impl_ptr));
if (!delay_impl) {
delay_impl =
base::trace_event::TraceEventSyntheticDelayRegistry::GetInstance()
->GetOrCreateDelay(name);
base::subtle::Release_Store(
impl_ptr, reinterpret_cast<base::subtle::AtomicWord>(delay_impl));
}
return delay_impl;
}
} // namespace trace_event_internal
|