1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/cryptauth/sync_scheduler_impl.h"
#include <utility>
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/timer/mock_timer.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cryptauth {
using Strategy = SyncScheduler::Strategy;
using SyncState = SyncScheduler::SyncState;
namespace {
// Constants configuring the the scheduler.
const int kElapsedTimeDays = 40;
const int kRefreshPeriodDays = 30;
const int kRecoveryPeriodSeconds = 10;
const double kMaxJitterPercentage = 0.1;
const char kTestSchedulerName[] = "TestSyncSchedulerImpl";
// Returns true if |jittered_time_delta| is within the range of a jittered
// |base_time_delta| with a maximum of |max_jitter_ratio|.
bool IsTimeDeltaWithinJitter(const base::TimeDelta& base_time_delta,
const base::TimeDelta& jittered_time_delta,
double max_jitter_ratio) {
if (base_time_delta.is_zero())
return jittered_time_delta.is_zero();
base::TimeDelta difference =
(jittered_time_delta - base_time_delta).magnitude();
double percentage_of_base =
difference.InMillisecondsF() / base_time_delta.InMillisecondsF();
return percentage_of_base < max_jitter_ratio;
}
// Test harness for the SyncSchedulerImpl to create MockTimers.
class TestSyncSchedulerImpl : public SyncSchedulerImpl {
public:
TestSyncSchedulerImpl(Delegate* delegate,
base::TimeDelta refresh_period,
base::TimeDelta recovery_period,
double max_jitter_ratio)
: SyncSchedulerImpl(delegate,
refresh_period,
recovery_period,
max_jitter_ratio,
kTestSchedulerName) {}
~TestSyncSchedulerImpl() override {}
base::MockTimer* timer() { return mock_timer_; }
private:
std::unique_ptr<base::Timer> CreateTimer() override {
bool retain_user_task = false;
bool is_repeating = false;
mock_timer_ = new base::MockTimer(retain_user_task, is_repeating);
return base::WrapUnique(mock_timer_);
}
// A timer instance for testing. Owned by the parent scheduler.
base::MockTimer* mock_timer_;
DISALLOW_COPY_AND_ASSIGN(TestSyncSchedulerImpl);
};
} // namespace
class CryptAuthSyncSchedulerImplTest : public testing::Test,
public SyncSchedulerImpl::Delegate {
protected:
CryptAuthSyncSchedulerImplTest()
: refresh_period_(base::TimeDelta::FromDays(kRefreshPeriodDays)),
base_recovery_period_(
base::TimeDelta::FromSeconds(kRecoveryPeriodSeconds)),
zero_elapsed_time_(base::TimeDelta::FromSeconds(0)),
scheduler_(new TestSyncSchedulerImpl(this,
refresh_period_,
base_recovery_period_,
0)) {}
~CryptAuthSyncSchedulerImplTest() override {}
void OnSyncRequested(
std::unique_ptr<SyncScheduler::SyncRequest> sync_request) override {
sync_request_ = std::move(sync_request);
}
base::MockTimer* timer() { return scheduler_->timer(); }
// The time deltas used to configure |scheduler_|.
base::TimeDelta refresh_period_;
base::TimeDelta base_recovery_period_;
base::TimeDelta zero_elapsed_time_;
// The scheduler instance under test.
std::unique_ptr<TestSyncSchedulerImpl> scheduler_;
std::unique_ptr<SyncScheduler::SyncRequest> sync_request_;
DISALLOW_COPY_AND_ASSIGN(CryptAuthSyncSchedulerImplTest);
};
TEST_F(CryptAuthSyncSchedulerImplTest, ForceSyncSuccess) {
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
EXPECT_EQ(SyncState::WAITING_FOR_REFRESH, scheduler_->GetSyncState());
scheduler_->ForceSync();
EXPECT_EQ(SyncState::SYNC_IN_PROGRESS, scheduler_->GetSyncState());
EXPECT_TRUE(sync_request_);
sync_request_->OnDidComplete(true);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
EXPECT_EQ(SyncState::WAITING_FOR_REFRESH, scheduler_->GetSyncState());
}
TEST_F(CryptAuthSyncSchedulerImplTest, ForceSyncFailure) {
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
scheduler_->ForceSync();
EXPECT_TRUE(sync_request_);
sync_request_->OnDidComplete(false);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, PeriodicRefreshSuccess) {
EXPECT_EQ(SyncState::NOT_STARTED, scheduler_->GetSyncState());
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
EXPECT_EQ(refresh_period_, timer()->GetCurrentDelay());
timer()->Fire();
EXPECT_EQ(SyncState::SYNC_IN_PROGRESS, scheduler_->GetSyncState());
ASSERT_TRUE(sync_request_.get());
sync_request_->OnDidComplete(true);
EXPECT_EQ(SyncState::WAITING_FOR_REFRESH, scheduler_->GetSyncState());
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, PeriodicRefreshFailure) {
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
timer()->Fire();
sync_request_->OnDidComplete(false);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, AggressiveRecoverySuccess) {
scheduler_->Start(zero_elapsed_time_, Strategy::AGGRESSIVE_RECOVERY);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
EXPECT_EQ(base_recovery_period_, timer()->GetCurrentDelay());
timer()->Fire();
EXPECT_EQ(SyncState::SYNC_IN_PROGRESS, scheduler_->GetSyncState());
ASSERT_TRUE(sync_request_.get());
sync_request_->OnDidComplete(true);
EXPECT_EQ(SyncState::WAITING_FOR_REFRESH, scheduler_->GetSyncState());
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, AggressiveRecoveryFailure) {
scheduler_->Start(zero_elapsed_time_, Strategy::AGGRESSIVE_RECOVERY);
timer()->Fire();
sync_request_->OnDidComplete(false);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, AggressiveRecoveryBackOff) {
scheduler_->Start(zero_elapsed_time_, Strategy::AGGRESSIVE_RECOVERY);
base::TimeDelta last_recovery_period = base::TimeDelta::FromSeconds(0);
for (int i = 0; i < 20; ++i) {
timer()->Fire();
EXPECT_EQ(SyncState::SYNC_IN_PROGRESS, scheduler_->GetSyncState());
sync_request_->OnDidComplete(false);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
EXPECT_EQ(SyncState::WAITING_FOR_REFRESH, scheduler_->GetSyncState());
base::TimeDelta recovery_period = scheduler_->GetTimeToNextSync();
EXPECT_LE(last_recovery_period, recovery_period);
last_recovery_period = recovery_period;
}
// Backoffs should rapidly converge to the normal refresh period.
EXPECT_EQ(refresh_period_, last_recovery_period);
}
TEST_F(CryptAuthSyncSchedulerImplTest, RefreshFailureRecoverySuccess) {
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
timer()->Fire();
sync_request_->OnDidComplete(false);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
timer()->Fire();
sync_request_->OnDidComplete(true);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, SyncImmediatelyForPeriodicRefresh) {
scheduler_->Start(base::TimeDelta::FromDays(kElapsedTimeDays),
Strategy::PERIODIC_REFRESH);
EXPECT_TRUE(scheduler_->GetTimeToNextSync().is_zero());
EXPECT_TRUE(timer()->GetCurrentDelay().is_zero());
timer()->Fire();
EXPECT_TRUE(sync_request_);
EXPECT_EQ(Strategy::PERIODIC_REFRESH, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest,
SyncImmediatelyForAggressiveRecovery) {
scheduler_->Start(base::TimeDelta::FromDays(kElapsedTimeDays),
Strategy::AGGRESSIVE_RECOVERY);
EXPECT_TRUE(scheduler_->GetTimeToNextSync().is_zero());
EXPECT_TRUE(timer()->GetCurrentDelay().is_zero());
timer()->Fire();
EXPECT_TRUE(sync_request_);
EXPECT_EQ(Strategy::AGGRESSIVE_RECOVERY, scheduler_->GetStrategy());
}
TEST_F(CryptAuthSyncSchedulerImplTest, InitialSyncShorterByElapsedTime) {
base::TimeDelta elapsed_time = base::TimeDelta::FromDays(2);
scheduler_->Start(elapsed_time, Strategy::PERIODIC_REFRESH);
EXPECT_EQ(refresh_period_ - elapsed_time, scheduler_->GetTimeToNextSync());
timer()->Fire();
EXPECT_TRUE(sync_request_);
}
TEST_F(CryptAuthSyncSchedulerImplTest, PeriodicRefreshJitter) {
scheduler_.reset(new TestSyncSchedulerImpl(
this, refresh_period_, base_recovery_period_, kMaxJitterPercentage));
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
base::TimeDelta cumulative_jitter = base::TimeDelta::FromSeconds(0);
for (int i = 0; i < 10; ++i) {
base::TimeDelta next_sync_delta = scheduler_->GetTimeToNextSync();
cumulative_jitter += (next_sync_delta - refresh_period_).magnitude();
EXPECT_TRUE(IsTimeDeltaWithinJitter(refresh_period_, next_sync_delta,
kMaxJitterPercentage));
timer()->Fire();
sync_request_->OnDidComplete(true);
}
// The probablility that all periods are randomly equal to |refresh_period_|
// is so low that we would expect the heat death of the universe before this
// test flakes.
EXPECT_FALSE(cumulative_jitter.is_zero());
}
TEST_F(CryptAuthSyncSchedulerImplTest, JitteredTimeDeltaIsNonNegative) {
base::TimeDelta zero_delta = base::TimeDelta::FromSeconds(0);
double max_jitter_ratio = 1;
scheduler_.reset(new TestSyncSchedulerImpl(this, zero_delta, zero_delta,
max_jitter_ratio));
scheduler_->Start(zero_elapsed_time_, Strategy::PERIODIC_REFRESH);
for (int i = 0; i < 10; ++i) {
base::TimeDelta next_sync_delta = scheduler_->GetTimeToNextSync();
EXPECT_GE(zero_delta, next_sync_delta);
EXPECT_TRUE(
IsTimeDeltaWithinJitter(zero_delta, next_sync_delta, max_jitter_ratio));
timer()->Fire();
sync_request_->OnDidComplete(true);
}
}
TEST_F(CryptAuthSyncSchedulerImplTest, StartWithNegativeElapsedTime) {
// This could happen in rare cases where the system clock changes.
scheduler_->Start(base::TimeDelta::FromDays(-1000),
Strategy::PERIODIC_REFRESH);
base::TimeDelta zero_delta = base::TimeDelta::FromSeconds(0);
EXPECT_EQ(zero_delta, scheduler_->GetTimeToNextSync());
EXPECT_EQ(zero_delta, timer()->GetCurrentDelay());
}
} // namespace cryptauth
|