1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_DISPLAY_COMPOSITOR_GL_HELPER_SCALING_H_
#define COMPONENTS_DISPLAY_COMPOSITOR_GL_HELPER_SCALING_H_
#include <deque>
#include <map>
#include <vector>
#include "base/macros.h"
#include "components/display_compositor/display_compositor_export.h"
#include "components/display_compositor/gl_helper.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
namespace display_compositor {
class ShaderProgram;
class ScalerImpl;
class GLHelperTest;
// Implements GPU texture scaling methods.
// Note that you should probably not use this class directly.
// See gl_helper.cc::CreateScaler instead.
class DISPLAY_COMPOSITOR_EXPORT GLHelperScaling {
public:
enum ShaderType {
SHADER_BILINEAR,
SHADER_BILINEAR2,
SHADER_BILINEAR3,
SHADER_BILINEAR4,
SHADER_BILINEAR2X2,
SHADER_BICUBIC_UPSCALE,
SHADER_BICUBIC_HALF_1D,
SHADER_PLANAR,
SHADER_YUV_MRT_PASS1,
SHADER_YUV_MRT_PASS2,
};
// Similar to ScalerInterface, but can generate multiple outputs.
// Used for YUV conversion in gl_helper.c
class DISPLAY_COMPOSITOR_EXPORT ShaderInterface {
public:
ShaderInterface() {}
virtual ~ShaderInterface() {}
// Note that the src_texture will have the min/mag filter set to GL_LINEAR
// and wrap_s/t set to CLAMP_TO_EDGE in this call.
virtual void Execute(GLuint source_texture,
const std::vector<GLuint>& dest_textures) = 0;
};
typedef std::pair<ShaderType, bool> ShaderProgramKeyType;
GLHelperScaling(gpu::gles2::GLES2Interface* gl, GLHelper* helper);
~GLHelperScaling();
void InitBuffer();
GLHelper::ScalerInterface* CreateScaler(GLHelper::ScalerQuality quality,
gfx::Size src_size,
gfx::Rect src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle);
GLHelper::ScalerInterface* CreatePlanarScaler(const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
const float color_weights[4]);
ShaderInterface* CreateYuvMrtShader(const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
ShaderType shader);
private:
// A ScaleOp represents a pass in a scaler pipeline, in one dimension.
// Note that when quality is GOOD, multiple scaler passes will be
// combined into one operation for increased performance.
// Exposed in the header file for testing purposes.
struct ScaleOp {
ScaleOp(int factor, bool x, int size)
: scale_factor(factor), scale_x(x), scale_size(size) {}
// Calculate a set of ScaleOp needed to convert an image of size
// |src| into an image of size |dst|. If |scale_x| is true, then
// the calculations are for the X axis of the image, otherwise Y.
// If |allow3| is true, we can use a SHADER_BILINEAR3 to replace
// a scale up and scale down with a 3-tap bilinear scale.
// The calculated ScaleOps are added to |ops|.
static void AddOps(int src,
int dst,
bool scale_x,
bool allow3,
std::deque<ScaleOp>* ops) {
int num_downscales = 0;
if (allow3 && dst * 3 >= src && dst * 2 < src) {
// Technically, this should be a scale up and then a
// scale down, but it makes the optimization code more
// complicated.
ops->push_back(ScaleOp(3, scale_x, dst));
return;
}
while ((dst << num_downscales) < src) {
num_downscales++;
}
if ((dst << num_downscales) != src) {
ops->push_back(ScaleOp(0, scale_x, dst << num_downscales));
}
while (num_downscales) {
num_downscales--;
ops->push_back(ScaleOp(2, scale_x, dst << num_downscales));
}
}
// Update |size| to its new size. Before calling this function
// |size| should be the size of the input image. After calling it,
// |size| will be the size of the image after this particular
// scaling operation.
void UpdateSize(gfx::Size* subrect) {
if (scale_x) {
subrect->set_width(scale_size);
} else {
subrect->set_height(scale_size);
}
}
// A scale factor of 0 means upscale
// 2 means 50% scale
// 3 means 33% scale, etc.
int scale_factor;
bool scale_x; // Otherwise y
int scale_size; // Size to scale to.
};
// Full specification for a single scaling stage.
struct ScalerStage {
ScalerStage(ShaderType shader_,
gfx::Size src_size_,
gfx::Rect src_subrect_,
gfx::Size dst_size_,
bool scale_x_,
bool vertically_flip_texture_,
bool swizzle_);
ScalerStage(const ScalerStage& other);
ShaderType shader;
gfx::Size src_size;
gfx::Rect src_subrect;
gfx::Size dst_size;
bool scale_x;
bool vertically_flip_texture;
bool swizzle;
};
// Compute a vector of scaler stages for a particular
// set of input/output parameters.
void ComputeScalerStages(GLHelper::ScalerQuality quality,
const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
std::vector<ScalerStage>* scaler_stages);
// Take two queues of ScaleOp structs and generate a
// vector of scaler stages. This is the second half of
// ComputeScalerStages.
void ConvertScalerOpsToScalerStages(
GLHelper::ScalerQuality quality,
gfx::Size src_size,
gfx::Rect src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
std::deque<GLHelperScaling::ScaleOp>* x_ops,
std::deque<GLHelperScaling::ScaleOp>* y_ops,
std::vector<ScalerStage>* scaler_stages);
scoped_refptr<ShaderProgram> GetShaderProgram(ShaderType type, bool swizzle);
// Interleaved array of 2-dimentional vertex positions (x, y) and
// 2-dimentional texture coordinates (s, t).
static const GLfloat kVertexAttributes[];
gpu::gles2::GLES2Interface* gl_;
GLHelper* helper_;
// The buffer that holds the vertices and the texture coordinates data for
// drawing a quad.
ScopedBuffer vertex_attributes_buffer_;
std::map<ShaderProgramKeyType, scoped_refptr<ShaderProgram>> shader_programs_;
friend class ShaderProgram;
friend class ScalerImpl;
friend class GLHelperBenchmark;
friend class GLHelperTest;
DISALLOW_COPY_AND_ASSIGN(GLHelperScaling);
};
} // namespace display_compositor
#endif // COMPONENTS_DISPLAY_COMPOSITOR_GL_HELPER_SCALING_H_
|