1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_encryption_provider.h"
#include <vector>
#include "base/base64.h"
#include "base/bind.h"
#include "base/logging.h"
#include "components/gcm_driver/common/gcm_messages.h"
#include "components/gcm_driver/crypto/encryption_header_parsers.h"
#include "components/gcm_driver/crypto/gcm_key_store.h"
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "components/gcm_driver/crypto/proto/gcm_encryption_data.pb.h"
namespace gcm {
namespace {
const char kEncryptionProperty[] = "encryption";
const char kCryptoKeyProperty[] = "crypto-key";
// Directory in the GCM Store in which the encryption database will be stored.
const base::FilePath::CharType kEncryptionDirectoryName[] =
FILE_PATH_LITERAL("Encryption");
} // namespace
std::string GCMEncryptionProvider::ToDecryptionResultDetailsString(
DecryptionResult result) {
switch (result) {
case DECRYPTION_RESULT_UNENCRYPTED:
return "Message was not encrypted";
case DECRYPTION_RESULT_DECRYPTED:
return "Message decrypted";
case DECRYPTION_RESULT_INVALID_ENCRYPTION_HEADER:
return "Invalid format for the Encryption header";
case DECRYPTION_RESULT_INVALID_CRYPTO_KEY_HEADER:
return "Invalid format for the Crypto-Key header";
case DECRYPTION_RESULT_NO_KEYS:
return "There are no associated keys with the subscription";
case DECRYPTION_RESULT_INVALID_SHARED_SECRET:
return "The shared secret cannot be derived from the keying material";
case DECRYPTION_RESULT_INVALID_PAYLOAD:
return "AES-GCM decryption failed";
}
NOTREACHED();
return "(invalid result)";
}
GCMEncryptionProvider::GCMEncryptionProvider()
: weak_ptr_factory_(this) {
}
GCMEncryptionProvider::~GCMEncryptionProvider() {
}
void GCMEncryptionProvider::Init(
const base::FilePath& store_path,
const scoped_refptr<base::SequencedTaskRunner>& blocking_task_runner) {
DCHECK(!key_store_);
base::FilePath encryption_store_path = store_path;
// |store_path| can be empty in tests, which means that the database should
// be created in memory rather than on-disk.
if (!store_path.empty())
encryption_store_path = store_path.Append(kEncryptionDirectoryName);
key_store_.reset(
new GCMKeyStore(encryption_store_path, blocking_task_runner));
}
void GCMEncryptionProvider::GetEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
const EncryptionInfoCallback& callback) {
DCHECK(key_store_);
key_store_->GetKeys(app_id, authorized_entity,
false /* fallback_to_empty_authorized_entity */,
base::Bind(&GCMEncryptionProvider::DidGetEncryptionInfo,
weak_ptr_factory_.GetWeakPtr(), app_id,
authorized_entity, callback));
}
void GCMEncryptionProvider::RemoveEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
const base::Closure& callback) {
DCHECK(key_store_);
key_store_->RemoveKeys(app_id, authorized_entity, callback);
}
bool GCMEncryptionProvider::IsEncryptedMessage(const IncomingMessage& message)
const {
// The Web Push protocol requires the encryption and crypto-key properties to
// be set, and the raw_data field to be populated with the payload.
if (message.data.find(kEncryptionProperty) == message.data.end() ||
message.data.find(kCryptoKeyProperty) == message.data.end())
return false;
return message.raw_data.size() > 0;
}
void GCMEncryptionProvider::DecryptMessage(
const std::string& app_id,
const IncomingMessage& message,
const MessageCallback& callback) {
DCHECK(key_store_);
if (!IsEncryptedMessage(message)) {
callback.Run(DECRYPTION_RESULT_UNENCRYPTED, message);
return;
}
// IsEncryptedMessage() verifies that both the Encryption and Crypto-Key HTTP
// headers have been provided for the |message|.
const auto& encryption_header = message.data.find(kEncryptionProperty);
const auto& crypto_key_header = message.data.find(kCryptoKeyProperty);
DCHECK(encryption_header != message.data.end());
DCHECK(crypto_key_header != message.data.end());
EncryptionHeaderIterator encryption_header_iterator(
encryption_header->second.begin(), encryption_header->second.end());
if (!encryption_header_iterator.GetNext()) {
DLOG(ERROR) << "Unable to parse the value of the Encryption header";
callback.Run(DECRYPTION_RESULT_INVALID_ENCRYPTION_HEADER,
IncomingMessage());
return;
}
if (encryption_header_iterator.salt().size() !=
GCMMessageCryptographer::kSaltSize) {
DLOG(ERROR) << "Invalid values supplied in the Encryption header";
callback.Run(DECRYPTION_RESULT_INVALID_ENCRYPTION_HEADER,
IncomingMessage());
return;
}
CryptoKeyHeaderIterator crypto_key_header_iterator(
crypto_key_header->second.begin(), crypto_key_header->second.end());
if (!crypto_key_header_iterator.GetNext()) {
DLOG(ERROR) << "Unable to parse the value of the Crypto-Key header";
callback.Run(DECRYPTION_RESULT_INVALID_CRYPTO_KEY_HEADER,
IncomingMessage());
return;
}
// Ignore values that don't include the "dh" property. When using VAPID, it is
// valid for the application server to supply multiple values.
while (crypto_key_header_iterator.dh().empty() &&
crypto_key_header_iterator.GetNext()) {}
bool valid_crypto_key_header = false;
std::string dh;
if (!crypto_key_header_iterator.dh().empty()) {
dh = crypto_key_header_iterator.dh();
valid_crypto_key_header = true;
// Guard against the "dh" property being included more than once.
while (crypto_key_header_iterator.GetNext()) {
if (crypto_key_header_iterator.dh().empty())
continue;
valid_crypto_key_header = false;
break;
}
}
if (!valid_crypto_key_header) {
DLOG(ERROR) << "Invalid values supplied in the Crypto-Key header";
callback.Run(DECRYPTION_RESULT_INVALID_CRYPTO_KEY_HEADER,
IncomingMessage());
return;
}
// Use |fallback_to_empty_authorized_entity|, since this message might have
// been sent to either an InstanceID token or a non-InstanceID registration.
key_store_->GetKeys(app_id, message.sender_id /* authorized_entity */,
true /* fallback_to_empty_authorized_entity */,
base::Bind(&GCMEncryptionProvider::DecryptMessageWithKey,
weak_ptr_factory_.GetWeakPtr(), message,
callback, encryption_header_iterator.salt(),
dh, encryption_header_iterator.rs()));
}
void GCMEncryptionProvider::DidGetEncryptionInfo(
const std::string& app_id,
const std::string& authorized_entity,
const EncryptionInfoCallback& callback,
const KeyPair& pair,
const std::string& auth_secret) {
if (!pair.IsInitialized()) {
key_store_->CreateKeys(
app_id, authorized_entity,
base::Bind(&GCMEncryptionProvider::DidCreateEncryptionInfo,
weak_ptr_factory_.GetWeakPtr(), callback));
return;
}
DCHECK_EQ(KeyPair::ECDH_P256, pair.type());
callback.Run(pair.public_key(), auth_secret);
}
void GCMEncryptionProvider::DidCreateEncryptionInfo(
const EncryptionInfoCallback& callback,
const KeyPair& pair,
const std::string& auth_secret) {
if (!pair.IsInitialized()) {
callback.Run(std::string() /* p256dh */,
std::string() /* auth_secret */);
return;
}
DCHECK_EQ(KeyPair::ECDH_P256, pair.type());
callback.Run(pair.public_key(), auth_secret);
}
void GCMEncryptionProvider::DecryptMessageWithKey(
const IncomingMessage& message,
const MessageCallback& callback,
const std::string& salt,
const std::string& dh,
uint64_t rs,
const KeyPair& pair,
const std::string& auth_secret) {
if (!pair.IsInitialized()) {
DLOG(ERROR) << "Unable to retrieve the keys for the incoming message.";
callback.Run(DECRYPTION_RESULT_NO_KEYS, IncomingMessage());
return;
}
DCHECK_EQ(KeyPair::ECDH_P256, pair.type());
std::string shared_secret;
if (!ComputeSharedP256Secret(pair.private_key(), pair.public_key_x509(), dh,
&shared_secret)) {
DLOG(ERROR) << "Unable to calculate the shared secret.";
callback.Run(DECRYPTION_RESULT_INVALID_SHARED_SECRET, IncomingMessage());
return;
}
std::string plaintext;
GCMMessageCryptographer cryptographer(pair.public_key(), dh, auth_secret);
if (!cryptographer.Decrypt(message.raw_data, shared_secret, salt, rs,
&plaintext)) {
DLOG(ERROR) << "Unable to decrypt the incoming data.";
callback.Run(DECRYPTION_RESULT_INVALID_PAYLOAD, IncomingMessage());
return;
}
IncomingMessage decrypted_message;
decrypted_message.collapse_key = message.collapse_key;
decrypted_message.sender_id = message.sender_id;
decrypted_message.raw_data.swap(plaintext);
decrypted_message.decrypted = true;
// There must be no data associated with the decrypted message at this point,
// to make sure that we don't end up in an infinite decryption loop.
DCHECK_EQ(0u, decrypted_message.data.size());
callback.Run(DECRYPTION_RESULT_DECRYPTED, decrypted_message);
}
} // namespace gcm
|