1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include <stddef.h>
#include <memory>
#include "base/base64url.h"
#include "base/macros.h"
#include "base/strings/string_util.h"
#include "components/gcm_driver/crypto/p256_key_util.h"
#include "crypto/random.h"
#include "crypto/symmetric_key.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gcm {
namespace {
// The number of bits of the key in AEAD_AES_128_GCM.
const size_t kKeySizeBits = 128;
// Example plaintext data to use in the tests.
const char kExamplePlaintext[] = "Example plaintext";
// Fixed local and peer public keys must be used to get consistent results.
const char kLocalPublicKeyCommon[] =
"BIXzEKOFquzVlr_1tS1bhmobZU3IJq2bswDflMJsizixqd_HFSvCJaCAotNjBw6A-iKQk7FshA"
"jdAA-T9Rh1a7U";
const char kPeerPublicKeyCommon[] =
"BAuzSrdIyKZsHnuOhqklkIKi6fl65V9OdPy6nFwI2SywL5-6I5SkkDtfIL9y7NkoEE345jv2Eo"
"5n4NIbLJIBjTM";
const char kAuthSecretCommon[] = "MyAuthenticationSecret";
// A test vector contains the information necessary to either encrypt or decrypt
// a message. These vectors were created using a JavaScript implementation of
// the same RFCs that the GCMMessageCryptographer implements.
struct TestVector {
const char* const input;
const char* const key;
const char* const salt;
size_t record_size;
const char* const output;
};
const TestVector kEncryptionTestVectors[] = {
// Simple message.
{ "Hello, world!",
"AhA6n2oFYPWIh-cXwyv1m2C0JvmjHB4ZkXj8QylESXU",
"tsJYqAGvFDk6lDEv7daecw",
4096,
"FgWrrnZq79oI_N4ORkVLHx1jfVmjeiIk-xFX8PzVuA"
},
// Empty message.
{ "",
"lMyvTong4VR053jfCpWmMDGW5dEDAqiTZUIU-inhTjU",
"wH3uvZqcN6oey9whiGpn1A",
4096,
"MTI9zZ8CJTUzbZ4qNDoQZs0k"
},
// Message with an invalid salt size.
{ "Hello, world!",
"CcdxzkR6z1EY9vSrM7_IxYVxDxu46hV638EZQTPd7XI",
"aRr1fI1YSGVi5XU",
4096,
nullptr // expected to fail
}
};
const TestVector kDecryptionTestVectors[] = {
// Simple message.
{ "ceiEu_YpmqLoakD4smdzvy2XKRQrJ9vBzB2aqYEfzw",
"47ZytAw9qHlm-Q8g-7rH81rUPzaCgGcoFvlS1qxQtQk",
"EuR7EVetcaWpndXd_dKeyA",
4096,
"Hello, world!"
},
// Simple message with 16 bytes of padding.
{ "WSf6fz1O0aIJyaPTCnvk83OqIQxsRKeFOvblPLsPpFB_1AV9ROk09TE1cGrB6zQ",
"MYSsNybwrTzRIzQYUq_yFPc6ugcTrJdEZJDM4NswvUg",
"8sEAMQYnufo2UkKl80cUGQ",
4096,
"Hello, world!"
},
// Empty message.
{ "Ur3vHedGDO5IPYDvbhHYjbjG",
"S3-Ki_-XtzR66gUp_zR75CC5JXO62pyr5fWfneTYwFE",
"4RM6s19jJHdmqiVEJDp9jg",
4096,
""
},
// Message with an invalid salt size.
{ "iGrOpmJC5XTTf7wtgdhZ_qT",
"wW3Iy5ma803lLd-ysPdHUe2NB3HqXbY0XhCCdG5Y1Gw",
"N7oMH_xohAhMhOY",
4096,
nullptr // expected to fail
},
// Message with an invalid record size.
{ "iGrOpmJC5XTTf7wtgdhZ_qT",
"kR5BMfqMKOD1yrLKE2giObXHI7merrMtnoO2oqneqXA",
"SQeJSPrqHvTdSfAMF8bBzQ",
8,
nullptr // expected to fail
},
// Message with multiple (2) records.
{ "RqQVHRXlfYjzW9xhzh3V_KijLKjZiKzGXosqN_IaMzi0zI0tXXhC1urtrk3iWRoqttNXpkD2r"
"UCgLy8A1FnTjw",
"W3W4gx7sqcfmBnvNNdO9d4MBCC1bvJkvsNjZOGD-CCg",
"xG0TPGi9aIcxjpXKmaYBBQ",
7,
nullptr // expected to fail
}
};
} // namespace
class GCMMessageCryptographerTest : public ::testing::Test {
public:
void SetUp() override {
std::unique_ptr<crypto::SymmetricKey> random_key(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES,
kKeySizeBits));
ASSERT_TRUE(random_key->GetRawKey(&key_));
std::string local_public_key, peer_public_key;
ASSERT_TRUE(base::Base64UrlDecode(
kLocalPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&local_public_key));
ASSERT_TRUE(base::Base64UrlDecode(
kPeerPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&peer_public_key));
cryptographer_.reset(
new GCMMessageCryptographer(local_public_key, peer_public_key,
kAuthSecretCommon));
}
protected:
// Generates a cryptographically secure random salt of 16-octets in size, the
// required length as expected by the HKDF.
std::string GenerateRandomSalt() {
const size_t kSaltSize = 16;
std::string salt;
crypto::RandBytes(base::WriteInto(&salt, kSaltSize + 1), kSaltSize);
return salt;
}
GCMMessageCryptographer* cryptographer() { return cryptographer_.get(); }
base::StringPiece key() const { return key_; }
private:
std::unique_ptr<GCMMessageCryptographer> cryptographer_;
std::string key_;
};
TEST_F(GCMMessageCryptographerTest, RoundTrip) {
const std::string salt = GenerateRandomSalt();
size_t record_size = 0;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt,
&record_size, &ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_GT(ciphertext.size(), 0u);
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
EXPECT_EQ(kExamplePlaintext, plaintext);
}
TEST_F(GCMMessageCryptographerTest, RoundTripEmptyMessage) {
const std::string salt = GenerateRandomSalt();
const std::string message = "";
size_t record_size = 0;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->Encrypt(message, key(), salt, &record_size,
&ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_GT(ciphertext.size(), 0u);
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
EXPECT_EQ(message, plaintext);
}
TEST_F(GCMMessageCryptographerTest, InvalidRecordSize) {
const std::string salt = GenerateRandomSalt();
size_t record_size = 0;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->Encrypt(kExamplePlaintext, key(), salt,
&record_size, &ciphertext));
EXPECT_GT(record_size, ciphertext.size() - 16);
EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt,
0 /* record_size */, &plaintext));
EXPECT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt,
ciphertext.size() - 17, &plaintext));
EXPECT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt,
ciphertext.size() - 16, &plaintext));
}
TEST_F(GCMMessageCryptographerTest, InvalidRecordPadding) {
std::string message = std::string(sizeof(uint16_t), '\0') + kExamplePlaintext;
const std::string salt = GenerateRandomSalt();
const std::string prk = cryptographer()->DerivePseudoRandomKey(key());
const std::string nonce = cryptographer()->DeriveNonce(prk, salt);
const std::string content_encryption_key =
cryptographer()->DeriveContentEncryptionKey(prk, salt);
ASSERT_GT(message.size(), 1u);
const size_t record_size = message.size() + 1;
std::string ciphertext, plaintext;
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_TRUE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
// Note that GCMMessageCryptographer::Decrypt removes the padding.
EXPECT_EQ(kExamplePlaintext, plaintext);
// Now run the same steps again, but say that there are four padding octets.
// This should be rejected because the padding will not be all zeros.
message[0] = 4;
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
// Do the same but changing the second octet indicating padding size, leaving
// the first octet at zero.
message[0] = 0;
message[1] = 4;
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
// Run the same steps again, but say that there are more padding octets than
// the length of the message.
message[0] = 64;
EXPECT_GT(static_cast<size_t>(message[0]), message.size());
ASSERT_TRUE(cryptographer()->EncryptDecryptRecordInternal(
GCMMessageCryptographer::ENCRYPT, message, content_encryption_key, nonce,
&ciphertext));
ASSERT_FALSE(cryptographer()->Decrypt(ciphertext, key(), salt, record_size,
&plaintext));
}
TEST_F(GCMMessageCryptographerTest, EncryptionTestVectors) {
std::string key, salt, output, ciphertext;
size_t record_size = 0;
for (size_t i = 0; i < arraysize(kEncryptionTestVectors); ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &key));
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].salt,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
const bool has_output = kEncryptionTestVectors[i].output;
const bool result = cryptographer()->Encrypt(
kEncryptionTestVectors[i].input, key, salt, &record_size, &ciphertext);
if (!has_output) {
EXPECT_FALSE(result);
continue;
}
EXPECT_TRUE(result);
ASSERT_TRUE(base::Base64UrlDecode(
kEncryptionTestVectors[i].output,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &output));
EXPECT_EQ(kEncryptionTestVectors[i].record_size, record_size);
EXPECT_EQ(output, ciphertext);
}
}
TEST_F(GCMMessageCryptographerTest, DecryptionTestVectors) {
std::string input, key, salt, plaintext;
for (size_t i = 0; i < arraysize(kDecryptionTestVectors); ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].input,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &input));
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &key));
ASSERT_TRUE(base::Base64UrlDecode(
kDecryptionTestVectors[i].salt,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
const bool has_output = kDecryptionTestVectors[i].output;
const bool result = cryptographer()->Decrypt(
input, key, salt, kDecryptionTestVectors[i].record_size, &plaintext);
if (!has_output) {
EXPECT_FALSE(result);
continue;
}
EXPECT_TRUE(result);
EXPECT_EQ(kDecryptionTestVectors[i].output, plaintext);
}
}
TEST_F(GCMMessageCryptographerTest, AuthSecretAffectsIKM) {
std::string public_key;
ASSERT_TRUE(base::Base64UrlDecode(
kLocalPublicKeyCommon, base::Base64UrlDecodePolicy::IGNORE_PADDING,
&public_key));
// Fake IKM to use in the DerivePseudoRandomKey calls.
const char kFakeIKM[] = "HelloWorld";
GCMMessageCryptographer hello_cryptographer(public_key, public_key, "Hello");
GCMMessageCryptographer world_cryptographer(public_key, public_key, "World");
ASSERT_NE(hello_cryptographer.DerivePseudoRandomKey(kFakeIKM), kFakeIKM);
ASSERT_NE(world_cryptographer.DerivePseudoRandomKey(kFakeIKM), kFakeIKM);
ASSERT_NE(hello_cryptographer.DerivePseudoRandomKey(kFakeIKM),
world_cryptographer.DerivePseudoRandomKey(kFakeIKM));
std::string salt = GenerateRandomSalt();
// Verify that the IKM actually gets used by the transformations.
size_t hello_record_size, world_record_size;
std::string hello_ciphertext, world_ciphertext;
ASSERT_TRUE(hello_cryptographer.Encrypt(kExamplePlaintext, key(), salt,
&hello_record_size,
&hello_ciphertext));
ASSERT_TRUE(world_cryptographer.Encrypt(kExamplePlaintext, key(), salt,
&world_record_size,
&world_ciphertext));
// If the ciphertexts differ despite the same key and salt, it got used.
ASSERT_NE(hello_ciphertext, world_ciphertext);
// Verify that the different ciphertexts can also be translated back to the
// plaintext content. This will fail if the auth secret isn't considered.
std::string hello_plaintext, world_plaintext;
ASSERT_TRUE(hello_cryptographer.Decrypt(hello_ciphertext, key(), salt,
hello_record_size, &hello_plaintext));
ASSERT_TRUE(world_cryptographer.Decrypt(world_ciphertext, key(), salt,
world_record_size, &world_plaintext));
EXPECT_EQ(kExamplePlaintext, hello_plaintext);
EXPECT_EQ(kExamplePlaintext, world_plaintext);
}
// Common infrastructure for reference tests against the examples in the draft:
// https://tools.ietf.org/html/draft-thomson-http-encryption
class GCMMessageCryptographerReferenceTest
: public GCMMessageCryptographerTest {
protected:
// Computes the shared secret between the sender and the receiver. The sender
// must have a key-pair containing a X.509 SubjectPublicKeyInfo block and a
// ASN.1-encoded PKCS #8 EncryptedPrivateKeyInfo block, whereas the receiver
// must have a public key in uncompressed EC point format.
void ComputeSharedSecret(const char* encoded_sender_private_key,
const char* encoded_sender_public_key_x509,
const char* encoded_receiver_public_key,
std::string* shared_secret) const {
std::string sender_private_key, sender_public_key_x509, receiver_public_key;
ASSERT_TRUE(base::Base64UrlDecode(
encoded_sender_private_key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &sender_private_key));
ASSERT_TRUE(base::Base64UrlDecode(
encoded_sender_public_key_x509,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &sender_public_key_x509));
ASSERT_TRUE(base::Base64UrlDecode(
encoded_receiver_public_key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &receiver_public_key));
ASSERT_TRUE(ComputeSharedP256Secret(
sender_private_key, sender_public_key_x509, receiver_public_key,
shared_secret));
}
// Creates a new cryptographer based on the P-256 curve with the given public
// keys of the sender and receiver, and optionally, the authentication secret.
// The public keys must be given as uncompressed P-256 EC points.
void CreateCryptographer(
const char* encoded_receiver_public_key,
const char* encoded_sender_public_key,
const char* encoded_auth_secret,
std::unique_ptr<GCMMessageCryptographer>* cryptographer) const {
std::string receiver_public_key, sender_public_key, auth_secret;
ASSERT_TRUE(base::Base64UrlDecode(
encoded_receiver_public_key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &receiver_public_key));
ASSERT_TRUE(base::Base64UrlDecode(
encoded_sender_public_key,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &sender_public_key));
if (encoded_auth_secret) {
ASSERT_TRUE(base::Base64UrlDecode(
encoded_auth_secret,
base::Base64UrlDecodePolicy::IGNORE_PADDING, &auth_secret));
}
std::unique_ptr<GCMMessageCryptographer> instance(
new GCMMessageCryptographer(receiver_public_key, sender_public_key,
auth_secret));
if (auth_secret.empty())
instance->set_allow_empty_auth_secret_for_tests(true);
cryptographer->swap(instance);
}
};
TEST_F(GCMMessageCryptographerReferenceTest, WithAuthSecret) {
// The 16-byte salt unique to the message.
const char kSalt[] = "lngarbyKfMoi9Z75xYXmkg";
// The 16-byte prearranged secret between the sender and receiver.
const char kAuthSecret[] = "R29vIGdvbyBnJyBqb29iIQ";
// The keying material used by the sender to encrypt the |kCiphertext|.
const char kSenderPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIh9aZ3UvuDloCAggABIGQZ-T8CJZe-no4mOTDgX1Gm986"
"Gsbe3mjJeABhA4KOmut_qJh5kt_DLqdNShiQr-afk3AdkX-fxLZdrcHiW9aWvBjnMAY65zg5"
"oHsuUaoEuG88Ksbku2u193OENWTQTsYaYE2O44qmRfsX773UNVcWXg_omwIbhbgf6tLZUZH_"
"dTC3YjzuxjbSP89HPEJ-eBXA";
const char kSenderPublicUncompressed[] =
"BNoRDbb84JGm8g5Z5CFxurSqsXWJ11ItfXEWYVLE85Y7CYkDjXsIEc4aqxYaQ1G8BqkXCJ6D"
"PpDrWtdWj_mugHU";
const char kSenderPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE2hENtvzgkabyDlnkIXG6tKqxdYnXUi19cRZh"
"UsTzljsJiQONewgRzhqrFhpDUbwGqRcInoM-kOta11aP-a6AdQ";
// The keying material used by the client to decrypt the |kCiphertext|.
const char kReceiverPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIqMt4d7uJdt4CAggABIGQeikRHE3CqUeF-uUtJno9BL0g"
"mNRyDihZe8P3nF_g-NYVzvdQowsXfYeza6OQOdDuMXxnGgNToVy2jsiWVN6rxCaSMTY622y8"
"ajW5voSdqC2PakQ8ZNTPNHarLDMC9NpgGKrUh8hfRLhvb7vtbKIWmx-22rQB5yTYdqzN2m7A"
"GHMWRnVk0mMzMsMjZqYFaa2D";
const char kReceiverPublicUncompressed[] =
"BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqRT21EEWyf0cQDQcakQMqz4hQKYOQ3"
"il2nNZct4HgAUQU";
const char kReceiverPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEISQGPMvxncL6iLZDugTm3Y2n6nuiyMYuD3ep"
"Q_TC-pFPbUQRbJ_RxANBxqRAyrPiFApg5DeKXac1ly3geABRBQ";
// The ciphertext and associated plaintext of the message.
const char kCiphertext[] = "6nqAQUME8hNqw5J3kl8cpVVJylXKYqZOeseZG8UueKpA";
const char kPlaintext[] = "I am the walrus";
std::string sender_shared_secret, receiver_shared_secret;
// Compute the shared secrets between the sender and receiver's keys.
ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
kSenderPrivate, kSenderPublicX509, kReceiverPublicUncompressed,
&sender_shared_secret));
ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
kReceiverPrivate, kReceiverPublicX509, kSenderPublicUncompressed,
&receiver_shared_secret));
ASSERT_GT(sender_shared_secret.size(), 0u);
ASSERT_EQ(sender_shared_secret, receiver_shared_secret);
std::unique_ptr<GCMMessageCryptographer> cryptographer;
ASSERT_NO_FATAL_FAILURE(CreateCryptographer(
kReceiverPublicUncompressed, kSenderPublicUncompressed, kAuthSecret,
&cryptographer));
std::string salt;
ASSERT_TRUE(base::Base64UrlDecode(
kSalt, base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
std::string encoded_ciphertext, ciphertext, plaintext;
size_t record_size = 0;
// Verify that encrypting |kPlaintext| yields the expected |kCiphertext|.
ASSERT_TRUE(cryptographer->Encrypt(kPlaintext, sender_shared_secret, salt,
&record_size, &ciphertext));
base::Base64UrlEncode(ciphertext, base::Base64UrlEncodePolicy::OMIT_PADDING,
&encoded_ciphertext);
ASSERT_EQ(kCiphertext, encoded_ciphertext);
// Verify that decrypting |kCiphertext| yields the expected |kPlaintext|.
ASSERT_TRUE(cryptographer->Decrypt(ciphertext, sender_shared_secret, salt,
record_size, &plaintext));
ASSERT_EQ(kPlaintext, plaintext);
}
TEST_F(GCMMessageCryptographerReferenceTest, WithoutAuthSecret) {
// The 16-byte salt unique to the message.
const char kSalt[] = "Qg61ZJRva_XBE9IEUelU3A";
// The keying material used by the sender to encrypt the |kCiphertext|.
const char kSenderPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIFfJ62c9VwXgCAggABIGQkRxDRPQjwuWp1C3-z1pYTDqF"
"_NZ1kbPsjmkC3JSv02oAYHtBAtKa2e3oAPqsPfCvoCJBJs6G4WY4EuEO1YFL6RKpNl3DpIUc"
"v9ShR27p_je_nyLpNBAxn2drnjlF_K6s4gcJmcvCxuNjAwOlLMPvQqGjOR2K_oMs1Hdq0EKJ"
"NwWt3WUVEpuQF_WhYjCVIeGO";
const char kSenderPublicUncompressed[] =
"BDgpRKok2GZZDmS4r63vbJSUtcQx4Fq1V58-6-3NbZzSTlZsQiCEDTQy3CZ0ZMsqeqsEb7qW"
"2blQHA4S48fynTk";
const char kSenderPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEOClEqiTYZlkOZLivre9slJS1xDHgWrVXnz7r"
"7c1tnNJOVmxCIIQNNDLcJnRkyyp6qwRvupbZuVAcDhLjx_KdOQ";
// The keying material used by the client to decrypt the |kCiphertext|.
const char kReceiverPrivate[] =
"MIGxMBwGCiqGSIb3DQEMAQMwDgQIqMt4d7uJdt4CAggABIGQeikRHE3CqUeF-uUtJno9BL0g"
"mNRyDihZe8P3nF_g-NYVzvdQowsXfYeza6OQOdDuMXxnGgNToVy2jsiWVN6rxCaSMTY622y8"
"ajW5voSdqC2PakQ8ZNTPNHarLDMC9NpgGKrUh8hfRLhvb7vtbKIWmx-22rQB5yTYdqzN2m7A"
"GHMWRnVk0mMzMsMjZqYFaa2D";
const char kReceiverPublicUncompressed[] =
"BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqRT21EEWyf0cQDQcakQMqz4hQKYOQ3"
"il2nNZct4HgAUQU";
const char kReceiverPublicX509[] =
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEISQGPMvxncL6iLZDugTm3Y2n6nuiyMYuD3ep"
"Q_TC-pFPbUQRbJ_RxANBxqRAyrPiFApg5DeKXac1ly3geABRBQ";
// The ciphertext and associated plaintext of the message.
const char kCiphertext[] = "yqD2bapcx14XxUbtwjiGx69eHE3Yd6AqXcwBpT2Kd1uy";
const char kPlaintext[] = "I am the walrus";
std::string sender_shared_secret, receiver_shared_secret;
// Compute the shared secrets between the sender and receiver's keys.
ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
kSenderPrivate, kSenderPublicX509, kReceiverPublicUncompressed,
&sender_shared_secret));
ASSERT_NO_FATAL_FAILURE(ComputeSharedSecret(
kReceiverPrivate, kReceiverPublicX509, kSenderPublicUncompressed,
&receiver_shared_secret));
ASSERT_GT(sender_shared_secret.size(), 0u);
ASSERT_EQ(sender_shared_secret, receiver_shared_secret);
std::unique_ptr<GCMMessageCryptographer> cryptographer;
ASSERT_NO_FATAL_FAILURE(CreateCryptographer(
kReceiverPublicUncompressed, kSenderPublicUncompressed,
nullptr /* auth_secret */, &cryptographer));
std::string salt;
ASSERT_TRUE(base::Base64UrlDecode(
kSalt, base::Base64UrlDecodePolicy::IGNORE_PADDING, &salt));
std::string encoded_ciphertext, ciphertext, plaintext;
size_t record_size = 0;
// Verify that encrypting |kPlaintext| yields the expected |kCiphertext|.
ASSERT_TRUE(cryptographer->Encrypt(kPlaintext, sender_shared_secret, salt,
&record_size, &ciphertext));
base::Base64UrlEncode(ciphertext, base::Base64UrlEncodePolicy::OMIT_PADDING,
&encoded_ciphertext);
ASSERT_EQ(kCiphertext, encoded_ciphertext);
// Verify that decrypting |kCiphertext| yields the expected |kPlaintext|.
ASSERT_TRUE(cryptographer->Decrypt(ciphertext, sender_shared_secret, salt,
record_size, &plaintext));
ASSERT_EQ(kPlaintext, plaintext);
}
} // namespace gcm
|