1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/metrics/leak_detector/call_stack_manager.h"
#include <stdint.h>
#include <algorithm>
#include <memory>
#include "base/macros.h"
#include "components/metrics/leak_detector/custom_allocator.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace metrics {
namespace leak_detector {
namespace {
// Some test call stacks. The addresses are 64-bit but they should automatically
// be truncated to 32 bits on a 32-bit machine.
const void* kRawStack0[] = {
reinterpret_cast<const void*>(0x8899aabbccddeeff),
reinterpret_cast<const void*>(0x0000112233445566),
reinterpret_cast<const void*>(0x5566778899aabbcc),
reinterpret_cast<const void*>(0x9988776655443322),
};
// This is similar to kRawStack0, differing only in one address by 1. It should
// still produce a distinct CallStack object and hash.
const void* kRawStack1[] = {
kRawStack0[0], kRawStack0[1],
reinterpret_cast<const void*>(reinterpret_cast<uintptr_t>(kRawStack0[2]) +
1),
kRawStack0[3],
};
const void* kRawStack2[] = {
reinterpret_cast<const void*>(0x900df00dcab58888),
reinterpret_cast<const void*>(0x00001337cafedeed),
reinterpret_cast<const void*>(0x0000deafbabe1234),
};
const void* kRawStack3[] = {
reinterpret_cast<const void*>(0x0000000012345678),
reinterpret_cast<const void*>(0x00000000abcdef01),
reinterpret_cast<const void*>(0x00000000fdecab98),
reinterpret_cast<const void*>(0x0000deadbeef0001),
reinterpret_cast<const void*>(0x0000900ddeed0002),
reinterpret_cast<const void*>(0x0000f00dcafe0003),
reinterpret_cast<const void*>(0x0000f00d900d0004),
reinterpret_cast<const void*>(0xdeedcafebabe0005),
};
// Creates a copy of a call stack as a scoped_ptr to a raw stack. The depth is
// the same as the original stack, but it is not stored in the result.
std::unique_ptr<const void* []> CopyStack(const CallStack* stack) {
std::unique_ptr<const void* []> stack_copy(new const void*[stack->depth]);
std::copy(stack->stack, stack->stack + stack->depth, stack_copy.get());
return stack_copy;
}
} // namespace
class CallStackManagerTest : public ::testing::Test {
public:
CallStackManagerTest() {}
void SetUp() override { CustomAllocator::Initialize(); }
void TearDown() override { EXPECT_TRUE(CustomAllocator::Shutdown()); }
private:
DISALLOW_COPY_AND_ASSIGN(CallStackManagerTest);
};
TEST_F(CallStackManagerTest, NewStacks) {
CallStackManager manager;
EXPECT_EQ(0U, manager.size());
// Request some new stacks and make sure their creation is reflected in the
// size of |manager|.
const CallStack* stack0 =
manager.GetCallStack(arraysize(kRawStack0), kRawStack0);
EXPECT_EQ(arraysize(kRawStack0), stack0->depth);
EXPECT_EQ(1U, manager.size());
const CallStack* stack1 =
manager.GetCallStack(arraysize(kRawStack1), kRawStack1);
EXPECT_EQ(arraysize(kRawStack1), stack1->depth);
EXPECT_EQ(2U, manager.size());
const CallStack* stack2 =
manager.GetCallStack(arraysize(kRawStack2), kRawStack2);
EXPECT_EQ(arraysize(kRawStack2), stack2->depth);
EXPECT_EQ(3U, manager.size());
const CallStack* stack3 =
manager.GetCallStack(arraysize(kRawStack3), kRawStack3);
EXPECT_EQ(arraysize(kRawStack3), stack3->depth);
EXPECT_EQ(4U, manager.size());
// Call stack objects should be unique.
EXPECT_NE(stack0, stack1);
EXPECT_NE(stack0, stack2);
EXPECT_NE(stack0, stack3);
EXPECT_NE(stack1, stack2);
EXPECT_NE(stack1, stack3);
EXPECT_NE(stack2, stack3);
}
TEST_F(CallStackManagerTest, Hashes) {
CallStackManager manager;
const CallStack* stack0 =
manager.GetCallStack(arraysize(kRawStack0), kRawStack0);
const CallStack* stack1 =
manager.GetCallStack(arraysize(kRawStack1), kRawStack1);
const CallStack* stack2 =
manager.GetCallStack(arraysize(kRawStack2), kRawStack2);
const CallStack* stack3 =
manager.GetCallStack(arraysize(kRawStack3), kRawStack3);
// Hash values should be unique. This test is not designed to make sure the
// hash function is generating unique hashes, but that CallStackManager is
// properly storing the hashes in CallStack structs.
EXPECT_NE(stack0->hash, stack1->hash);
EXPECT_NE(stack0->hash, stack2->hash);
EXPECT_NE(stack0->hash, stack3->hash);
EXPECT_NE(stack1->hash, stack2->hash);
EXPECT_NE(stack1->hash, stack3->hash);
EXPECT_NE(stack2->hash, stack3->hash);
}
TEST_F(CallStackManagerTest, MultipleManagersHashes) {
CallStackManager manager1;
const CallStack* stack10 =
manager1.GetCallStack(arraysize(kRawStack0), kRawStack0);
const CallStack* stack11 =
manager1.GetCallStack(arraysize(kRawStack1), kRawStack1);
const CallStack* stack12 =
manager1.GetCallStack(arraysize(kRawStack2), kRawStack2);
const CallStack* stack13 =
manager1.GetCallStack(arraysize(kRawStack3), kRawStack3);
CallStackManager manager2;
const CallStack* stack20 =
manager2.GetCallStack(arraysize(kRawStack0), kRawStack0);
const CallStack* stack21 =
manager2.GetCallStack(arraysize(kRawStack1), kRawStack1);
const CallStack* stack22 =
manager2.GetCallStack(arraysize(kRawStack2), kRawStack2);
const CallStack* stack23 =
manager2.GetCallStack(arraysize(kRawStack3), kRawStack3);
// Different CallStackManagers should still generate the same hashes.
EXPECT_EQ(stack10->hash, stack20->hash);
EXPECT_EQ(stack11->hash, stack21->hash);
EXPECT_EQ(stack12->hash, stack22->hash);
EXPECT_EQ(stack13->hash, stack23->hash);
}
TEST_F(CallStackManagerTest, HashWithReducedDepth) {
CallStackManager manager;
const CallStack* stack =
manager.GetCallStack(arraysize(kRawStack3), kRawStack3);
// Hash function should only operate on the first |CallStack::depth| elements
// of CallStack::stack. To test this, reduce the depth value of one of the
// stacks and make sure the hash changes.
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 1, stack->stack)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 2, stack->stack)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 3, stack->stack)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 4, stack->stack)->hash);
// Also try subsets of the stack that don't start from the beginning.
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 1, stack->stack + 1)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 2, stack->stack + 2)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 3, stack->stack + 3)->hash);
EXPECT_NE(stack->hash,
manager.GetCallStack(stack->depth - 4, stack->stack + 4)->hash);
}
TEST_F(CallStackManagerTest, DuplicateStacks) {
CallStackManager manager;
EXPECT_EQ(0U, manager.size());
// Calling manager.GetCallStack() multiple times with the same raw stack
// arguments will not result in creation of new call stack objects after the
// first call. Instead, the previously created object will be returned, and
// the size of |manager| will remain unchanged.
//
// Thus a call to GetCallStack() will always return the same result, given the
// same inputs.
// Add stack0.
const CallStack* stack0 =
manager.GetCallStack(arraysize(kRawStack0), kRawStack0);
std::unique_ptr<const void* []> rawstack0_duplicate0 = CopyStack(stack0);
const CallStack* stack0_duplicate0 =
manager.GetCallStack(arraysize(kRawStack0), rawstack0_duplicate0.get());
EXPECT_EQ(1U, manager.size());
EXPECT_EQ(stack0, stack0_duplicate0);
// Add stack1.
const CallStack* stack1 =
manager.GetCallStack(arraysize(kRawStack1), kRawStack1);
EXPECT_EQ(2U, manager.size());
std::unique_ptr<const void* []> rawstack0_duplicate1 = CopyStack(stack0);
const CallStack* stack0_duplicate1 =
manager.GetCallStack(arraysize(kRawStack0), rawstack0_duplicate1.get());
EXPECT_EQ(2U, manager.size());
EXPECT_EQ(stack0, stack0_duplicate1);
std::unique_ptr<const void* []> rawstack1_duplicate0 = CopyStack(stack1);
const CallStack* stack1_duplicate0 =
manager.GetCallStack(arraysize(kRawStack1), rawstack1_duplicate0.get());
EXPECT_EQ(2U, manager.size());
EXPECT_EQ(stack1, stack1_duplicate0);
// Add stack2 and stack3.
const CallStack* stack2 =
manager.GetCallStack(arraysize(kRawStack2), kRawStack2);
const CallStack* stack3 =
manager.GetCallStack(arraysize(kRawStack3), kRawStack3);
EXPECT_EQ(4U, manager.size());
std::unique_ptr<const void* []> rawstack1_duplicate1 = CopyStack(stack1);
const CallStack* stack1_duplicate1 =
manager.GetCallStack(arraysize(kRawStack1), rawstack1_duplicate1.get());
EXPECT_EQ(4U, manager.size());
EXPECT_EQ(stack1, stack1_duplicate1);
std::unique_ptr<const void* []> rawstack0_duplicate2 = CopyStack(stack0);
const CallStack* stack0_duplicate2 =
manager.GetCallStack(arraysize(kRawStack0), rawstack0_duplicate2.get());
EXPECT_EQ(4U, manager.size());
EXPECT_EQ(stack0, stack0_duplicate2);
std::unique_ptr<const void* []> rawstack3_duplicate0 = CopyStack(stack3);
const CallStack* stack3_duplicate0 =
manager.GetCallStack(arraysize(kRawStack3), rawstack3_duplicate0.get());
EXPECT_EQ(4U, manager.size());
EXPECT_EQ(stack3, stack3_duplicate0);
std::unique_ptr<const void* []> rawstack2_duplicate0 = CopyStack(stack2);
const CallStack* stack2_duplicate0 =
manager.GetCallStack(arraysize(kRawStack2), rawstack2_duplicate0.get());
EXPECT_EQ(4U, manager.size());
EXPECT_EQ(stack2, stack2_duplicate0);
}
} // namespace leak_detector
} // namespace metrics
|