1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/metrics/leak_detector/leak_detector_impl.h"
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <complex>
#include <memory>
#include <new>
#include <set>
#include <vector>
#include "base/macros.h"
#include "components/metrics/leak_detector/custom_allocator.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace metrics {
namespace leak_detector {
namespace {
// Makes working with complex numbers easier.
using Complex = std::complex<double>;
using InternalLeakReport = LeakDetectorImpl::LeakReport;
using AllocationBreakdown = LeakDetectorImpl::LeakReport::AllocationBreakdown;
// The mapping location in memory for a fictional executable.
const uintptr_t kMappingAddr = 0x800000;
const size_t kMappingSize = 0x200000;
// Some call stacks within the fictional executable.
// * - outside the mapping range, e.g. JIT code.
const uintptr_t kRawStack0[] = {
0x800100, 0x900000, 0x880080, 0x810000,
};
const uintptr_t kRawStack1[] = {
0x940000, 0x980000,
0xdeadbeef, // *
0x9a0000,
};
const uintptr_t kRawStack2[] = {
0x8f0d00, 0x803abc, 0x9100a0,
};
const uintptr_t kRawStack3[] = {
0x90fcde,
0x900df00d, // *
0x801000, 0x880088,
0xdeadcafe, // *
0x9f0000, 0x8700a0, 0x96037c,
};
const uintptr_t kRawStack4[] = {
0x8c0000, 0x85d00d, 0x921337,
0x780000, // *
};
const uintptr_t kRawStack5[] = {
0x990000, 0x888888, 0x830ac0, 0x8e0000,
0xc00000, // *
};
// This struct makes it easier to pass call stack info to
// LeakDetectorImplTest::Alloc().
struct TestCallStack {
const uintptr_t* stack; // A reference to the original stack data.
size_t depth;
};
const TestCallStack kStack0 = {kRawStack0, arraysize(kRawStack0)};
const TestCallStack kStack1 = {kRawStack1, arraysize(kRawStack1)};
const TestCallStack kStack2 = {kRawStack2, arraysize(kRawStack2)};
const TestCallStack kStack3 = {kRawStack3, arraysize(kRawStack3)};
const TestCallStack kStack4 = {kRawStack4, arraysize(kRawStack4)};
const TestCallStack kStack5 = {kRawStack5, arraysize(kRawStack5)};
// The interval between consecutive analyses (LeakDetectorImpl::TestForLeaks),
// in number of bytes allocated. e.g. if |kAllocedSizeAnalysisInterval| = 1024
// then call TestForLeaks() every 1024 bytes of allocation that occur.
const size_t kAllocedSizeAnalysisInterval = 8192;
// Suspicion thresholds used by LeakDetectorImpl for size and call stacks.
const uint32_t kSizeSuspicionThreshold = 4;
const uint32_t kCallStackSuspicionThreshold = 4;
// Because it takes N+1 analyses to reach a suspicion threshold of N (the
// suspicion score is only calculated based on deltas from the previous
// analysis), the actual number of analyses it takes to generate a report for
// the first time is:
const uint32_t kMinNumAnalysesToGenerateReport =
kSizeSuspicionThreshold + 1 + kCallStackSuspicionThreshold + 1;
// Returns the offset within [kMappingAddr, kMappingAddr + kMappingSize) if
// |addr| falls in that range. Otherwise, returns |UINTPTR_MAX|.
uintptr_t GetOffsetInMapping(uintptr_t addr) {
if (addr >= kMappingAddr && addr < kMappingAddr + kMappingSize)
return addr - kMappingAddr;
return UINTPTR_MAX;
}
// Copied from leak_detector_impl.cc. Converts a size to a size class index.
// Any size in the range [index * 4, index * 4 + 3] falls into that size class.
uint32_t SizeToIndex(size_t size) {
return size / sizeof(uint32_t);
}
// Returns true if the |alloc_breakdown_history_| field of the two LeakReports
// |a| and |b| are the same.
bool CompareReportAllocHistory(const InternalLeakReport& a,
const InternalLeakReport& b) {
auto alloc_breakdown_compare_func = [](AllocationBreakdown a,
AllocationBreakdown b) -> bool {
return std::equal(a.counts_by_size.begin(), a.counts_by_size.end(),
b.counts_by_size.begin()) &&
a.count_for_call_stack == b.count_for_call_stack;
};
return std::equal(
a.alloc_breakdown_history().begin(), a.alloc_breakdown_history().end(),
b.alloc_breakdown_history().begin(), alloc_breakdown_compare_func);
}
} // namespace
// This test suite will test the ability of LeakDetectorImpl to catch leaks in
// a program. Individual tests can run leaky code locally.
//
// The leaky code must call Alloc() and Free() for heap memory management. It
// should not call See comments on those
// functions for more details.
class LeakDetectorImplTest : public ::testing::Test {
public:
LeakDetectorImplTest()
: total_num_allocs_(0),
total_num_frees_(0),
total_alloced_size_(0),
next_analysis_total_alloced_size_(kAllocedSizeAnalysisInterval),
num_reports_generated_(0) {}
void SetUp() override {
CustomAllocator::Initialize();
detector_.reset(new LeakDetectorImpl(kMappingAddr, kMappingSize,
kSizeSuspicionThreshold,
kCallStackSuspicionThreshold));
}
void TearDown() override {
// Free any memory that was leaked by test cases. Do not use Free() because
// that will try to modify |alloced_ptrs_|.
for (void* ptr : alloced_ptrs_)
delete[] reinterpret_cast<char*>(ptr);
alloced_ptrs_.clear();
// Must destroy all objects that use CustomAllocator before shutting down.
detector_.reset();
stored_reports_.clear();
EXPECT_TRUE(CustomAllocator::Shutdown());
}
protected:
template <typename T>
using InternalVector = LeakDetectorImpl::InternalVector<T>;
// Alloc and free functions that allocate and free heap memory and
// automatically pass alloc/free info to |detector_|. They emulate the
// alloc/free hook functions that would call into LeakDetectorImpl in
// real-life usage. They also keep track of individual allocations locally, so
// any leaked memory could be cleaned up.
//
// |stack| is just a nominal call stack object to identify the call site. It
// doesn't have to contain the stack trace of the actual call stack.
void* Alloc(size_t size, const TestCallStack& stack) {
void* ptr = new char[size];
detector_->RecordAlloc(ptr, size, stack.depth,
reinterpret_cast<const void* const*>(stack.stack));
EXPECT_TRUE(alloced_ptrs_.find(ptr) == alloced_ptrs_.end());
alloced_ptrs_.insert(ptr);
++total_num_allocs_;
total_alloced_size_ += size;
if (total_alloced_size_ >= next_analysis_total_alloced_size_) {
InternalVector<InternalLeakReport> reports;
detector_->TestForLeaks(&reports, 1024);
for (const InternalLeakReport& report : reports) {
auto iter = stored_reports_.find(report);
if (iter == stored_reports_.end()) {
stored_reports_.insert(report);
} else {
// InternalLeakReports are uniquely identified by |alloc_size_bytes_|
// and |call_stack_|. See InternalLeakReport::operator<().
// If a report with the same size and call stack already exists,
// overwrite it with the new report, which has a newer history.
stored_reports_.erase(iter);
stored_reports_.insert(report);
}
}
num_reports_generated_ += reports.size();
// Determine when the next leak analysis should occur.
while (total_alloced_size_ >= next_analysis_total_alloced_size_)
next_analysis_total_alloced_size_ += kAllocedSizeAnalysisInterval;
}
return ptr;
}
// See comment for Alloc().
void Free(void* ptr) {
auto find_ptr_iter = alloced_ptrs_.find(ptr);
EXPECT_FALSE(find_ptr_iter == alloced_ptrs_.end());
if (find_ptr_iter == alloced_ptrs_.end())
return;
alloced_ptrs_.erase(find_ptr_iter);
++total_num_frees_;
detector_->RecordFree(ptr);
delete[] reinterpret_cast<char*>(ptr);
}
// TEST CASE: Simple program that leaks memory regularly. Pass in
// enable_leaks=true to trigger some memory leaks.
void SimpleLeakyFunction(bool enable_leaks);
// TEST CASE: Julia set fractal computation. Pass in enable_leaks=true to
// trigger some memory leaks.
void JuliaSet(bool enable_leaks);
// Instance of the class being tested.
std::unique_ptr<LeakDetectorImpl> detector_;
// Number of pointers allocated and freed so far.
size_t total_num_allocs_;
size_t total_num_frees_;
// Keeps count of total size allocated by Alloc().
size_t total_alloced_size_;
// The cumulative allocation size at which to trigger the TestForLeaks() call.
size_t next_analysis_total_alloced_size_;
// Stores all pointers to memory allocated by by Alloc() so we can manually
// free the leaked pointers at the end. This also serves as redundant
// bookkeepping: it stores all pointers that have been allocated but not yet
// freed.
std::set<void*> alloced_ptrs_;
// Store leak reports here. Use a set so duplicate reports are not stored.
std::set<InternalLeakReport> stored_reports_;
// Keeps track of the actual number of reports (duplicate or not) that were
// generated by |detector_|.
size_t num_reports_generated_;
private:
DISALLOW_COPY_AND_ASSIGN(LeakDetectorImplTest);
};
void LeakDetectorImplTest::SimpleLeakyFunction(bool enable_leaks) {
std::vector<uint32_t*> ptrs(7);
const int kNumOuterIterations = 32;
for (int j = 0; j < kNumOuterIterations; ++j) {
// The inner loop allocates 256 bytes. Run it 32 times so that 8192 bytes
// (|kAllocedSizeAnalysisInterval|) are allocated for each iteration of the
// outer loop.
const int kNumInnerIterations = 32;
static_assert(kNumInnerIterations * 256 == kAllocedSizeAnalysisInterval,
"Inner loop iterations do not allocate the correct number of "
"bytes.");
for (int i = 0; i < kNumInnerIterations; ++i) {
size_t alloc_size_at_beginning = total_alloced_size_;
ptrs[0] = new(Alloc(16, kStack0)) uint32_t;
ptrs[1] = new(Alloc(32, kStack1)) uint32_t;
ptrs[2] = new(Alloc(48, kStack2)) uint32_t;
// Allocate two 32-byte blocks and record them as from the same call site.
ptrs[3] = new(Alloc(32, kStack3)) uint32_t;
ptrs[4] = new(Alloc(32, kStack3)) uint32_t;
// Allocate two 48-byte blocks and record them as from the same call site.
ptrs[5] = new(Alloc(48, kStack4)) uint32_t;
ptrs[6] = new(Alloc(48, kStack4)) uint32_t;
// Now free these pointers.
Free(ptrs[0]);
if (!enable_leaks) // Leak with size=32, call_stack=kStack1.
Free(ptrs[1]);
if (!enable_leaks) // Leak with size=48, call_stack=kStack2.
Free(ptrs[2]);
Free(ptrs[3]);
Free(ptrs[4]);
Free(ptrs[5]);
Free(ptrs[6]);
// Make sure that the above code actually allocates 256 bytes.
EXPECT_EQ(alloc_size_at_beginning + 256, total_alloced_size_);
}
}
}
void LeakDetectorImplTest::JuliaSet(bool enable_leaks) {
// The center region of the complex plane that is the basis for our Julia set
// computations is a circle of radius kRadius.
constexpr double kRadius = 2;
// To track points in the complex plane, we will use a rectangular grid in the
// range defined by [-kRadius, kRadius] along both axes.
constexpr double kRangeMin = -kRadius;
constexpr double kRangeMax = kRadius;
// Divide each axis into intervals, each of which is associated with a point
// on that axis at its center.
constexpr double kIntervalInverse = 64;
constexpr double kInterval = 1.0 / kIntervalInverse;
constexpr int kNumPoints = (kRangeMax - kRangeMin) / kInterval + 1;
// Contains some useful functions for converting between points on the complex
// plane and in a gridlike data structure.
struct ComplexPlane {
static int GetXGridIndex(const Complex& value) {
return (value.real() + kInterval / 2 - kRangeMin) / kInterval;
}
static int GetYGridIndex(const Complex& value) {
return (value.imag() + kInterval / 2 - kRangeMin) / kInterval;
}
static int GetArrayIndex(const Complex& value) {
return GetXGridIndex(value) + GetYGridIndex(value) * kNumPoints;
}
static Complex GetComplexForGridPoint(size_t x, size_t y) {
return Complex(kRangeMin + x * kInterval, kRangeMin + y * kInterval);
}
};
// Make sure the choice of interval doesn't result in any loss of precision.
ASSERT_EQ(1.0, kInterval * kIntervalInverse);
// Create a grid for part of the complex plane, with each axis within the
// range [kRangeMin, kRangeMax].
constexpr size_t width = kNumPoints;
constexpr size_t height = kNumPoints;
std::vector<Complex*> grid(width * height);
// Initialize an object for each point within the inner circle |z| < kRadius.
for (size_t i = 0; i < width; ++i) {
for (size_t j = 0; j < height; ++j) {
Complex point = ComplexPlane::GetComplexForGridPoint(i, j);
// Do not store any values outside the inner circle.
if (abs(point) <= kRadius) {
grid[i + j * width] =
new (Alloc(sizeof(Complex), kStack0)) Complex(point);
}
}
}
EXPECT_LE(alloced_ptrs_.size(), width * height);
// Create a new grid for the result of the transformation.
std::vector<Complex*> next_grid(width * height, nullptr);
// Number of times to run the Julia set iteration. This is not the same as the
// number of analyses performed by LeakDetectorImpl, which is determined by
// the total number of bytes allocated divided by
// |kAllocedSizeAnalysisInterval|.
const int kNumIterations = 20;
for (int n = 0; n < kNumIterations; ++n) {
for (int i = 0; i < kNumPoints; ++i) {
for (int j = 0; j < kNumPoints; ++j) {
if (!grid[i + j * width])
continue;
// NOTE: The below code is NOT an efficient way to compute a Julia set.
// This is only to test the leak detector with some nontrivial code.
// A simple polynomial function for generating Julia sets is:
// f(z) = z^n + c
// But in this algorithm, we need the inverse:
// fInv(z) = (z - c)^(1/n)
// Here, let's use n=5 and c=0.544.
const Complex c(0.544, 0);
const Complex& z = *grid[i + j * width];
// This is the principal root.
Complex root = pow(z - c, 0.2);
// Discard the result if it is too far out from the center of the plane.
if (abs(root) > kRadius)
continue;
// The below code only allocates Complex objects of the same size. The
// leak detector expects various sizes, so increase the allocation size
// by a different amount at each call site.
// Nth root produces N results.
// Place all root results on |next_grid|.
// First, place the principal root.
if (!next_grid[ComplexPlane::GetArrayIndex(root)]) {
next_grid[ComplexPlane::GetArrayIndex(root)] =
new (Alloc(sizeof(Complex) + 24, kStack1)) Complex(root);
}
double magnitude = abs(root);
double angle = arg(root);
// To generate other roots, rotate the principal root by increments of
// 1/N of a full circle.
const double kAngleIncrement = M_PI * 2 / 5;
// Second root.
root = std::polar(magnitude, angle + kAngleIncrement);
if (!next_grid[ComplexPlane::GetArrayIndex(root)]) {
next_grid[ComplexPlane::GetArrayIndex(root)] =
new (Alloc(sizeof(Complex) + 40, kStack2)) Complex(root);
}
// In some of the sections below, setting |enable_leaks| to true will
// trigger a memory leak by overwriting the old Complex pointer value
// without freeing it. Due to the nature of complex roots being confined
// to equal sections of the complex plane, each new pointer will
// displace an old pointer that was allocated from the same line of
// code.
// Third root.
root = std::polar(magnitude, angle + kAngleIncrement * 2);
// *** LEAK ***
if (enable_leaks || !next_grid[ComplexPlane::GetArrayIndex(root)]) {
next_grid[ComplexPlane::GetArrayIndex(root)] =
new (Alloc(sizeof(Complex) + 40, kStack3)) Complex(root);
}
// Fourth root.
root = std::polar(magnitude, angle + kAngleIncrement * 3);
// *** LEAK ***
if (enable_leaks || !next_grid[ComplexPlane::GetArrayIndex(root)]) {
next_grid[ComplexPlane::GetArrayIndex(root)] =
new (Alloc(sizeof(Complex) + 52, kStack4)) Complex(root);
}
// Fifth root.
root = std::polar(magnitude, angle + kAngleIncrement * 4);
if (!next_grid[ComplexPlane::GetArrayIndex(root)]) {
next_grid[ComplexPlane::GetArrayIndex(root)] =
new (Alloc(sizeof(Complex) + 52, kStack5)) Complex(root);
}
}
}
// Clear the previously allocated points.
for (Complex*& point : grid) {
if (point) {
Free(point);
point = nullptr;
}
}
// Now swap the two grids for the next iteration.
grid.swap(next_grid);
}
// Clear the previously allocated points.
for (Complex*& point : grid) {
if (point) {
Free(point);
point = nullptr;
}
}
}
TEST_F(LeakDetectorImplTest, CheckTestFramework) {
EXPECT_EQ(0U, total_num_allocs_);
EXPECT_EQ(0U, total_num_frees_);
EXPECT_EQ(0U, alloced_ptrs_.size());
// Allocate some memory.
void* ptr0 = Alloc(12, kStack0);
void* ptr1 = Alloc(16, kStack0);
void* ptr2 = Alloc(24, kStack0);
EXPECT_EQ(3U, total_num_allocs_);
EXPECT_EQ(0U, total_num_frees_);
EXPECT_EQ(3U, alloced_ptrs_.size());
// Free one of the pointers.
Free(ptr1);
EXPECT_EQ(3U, total_num_allocs_);
EXPECT_EQ(1U, total_num_frees_);
EXPECT_EQ(2U, alloced_ptrs_.size());
// Allocate some more memory.
void* ptr3 = Alloc(72, kStack1);
void* ptr4 = Alloc(104, kStack1);
void* ptr5 = Alloc(96, kStack1);
void* ptr6 = Alloc(24, kStack1);
EXPECT_EQ(7U, total_num_allocs_);
EXPECT_EQ(1U, total_num_frees_);
EXPECT_EQ(6U, alloced_ptrs_.size());
// Free more pointers.
Free(ptr2);
Free(ptr4);
Free(ptr6);
EXPECT_EQ(7U, total_num_allocs_);
EXPECT_EQ(4U, total_num_frees_);
EXPECT_EQ(3U, alloced_ptrs_.size());
// Free remaining memory.
Free(ptr0);
Free(ptr3);
Free(ptr5);
EXPECT_EQ(7U, total_num_allocs_);
EXPECT_EQ(7U, total_num_frees_);
EXPECT_EQ(0U, alloced_ptrs_.size());
}
TEST_F(LeakDetectorImplTest, SimpleLeakyFunctionNoLeak) {
SimpleLeakyFunction(false /* enable_leaks */);
// SimpleLeakyFunction() should have run cleanly without leaking.
EXPECT_EQ(total_num_allocs_, total_num_frees_);
EXPECT_EQ(0U, alloced_ptrs_.size());
EXPECT_EQ(0U, num_reports_generated_);
EXPECT_EQ(0U, stored_reports_.size());
}
TEST_F(LeakDetectorImplTest, SimpleLeakyFunctionWithLeak) {
SimpleLeakyFunction(true /* enable_leaks */);
// SimpleLeakyFunction() should generated some leak reports.
EXPECT_GT(total_num_allocs_, total_num_frees_);
EXPECT_GT(alloced_ptrs_.size(), 0U);
EXPECT_EQ(2U, num_reports_generated_);
ASSERT_EQ(2U, stored_reports_.size());
// The reports should be stored in order of size.
// |report1| comes from the call site marked with kStack1, with size=32.
const InternalLeakReport& report1 = *stored_reports_.begin();
EXPECT_EQ(32U, report1.alloc_size_bytes());
ASSERT_EQ(kStack1.depth, report1.call_stack().size());
for (size_t i = 0; i < kStack1.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack1.stack[i]),
report1.call_stack()[i]) << i;
}
// |report2| comes from the call site marked with kStack2, with size=48.
const InternalLeakReport& report2 = *(++stored_reports_.begin());
EXPECT_EQ(48U, report2.alloc_size_bytes());
ASSERT_EQ(kStack2.depth, report2.call_stack().size());
for (size_t i = 0; i < kStack2.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack2.stack[i]),
report2.call_stack()[i]) << i;
}
// Check historical data recorded in the reports.
// - Each inner loop iteration allocates a net of 1x 32 bytes and 1x 48 bytes.
// - Each outer loop iteration allocates a net of 32x 32 bytes and 32x 48
// bytes.
// - However, the leak analysis happens after the allocs but before the frees
// that come right after. So it should count the two extra allocs made at
// call sites |kStack3| and |kStack4|. The formula is |(i + 1) * 32 + 2|,
// where |i| is the iteration index.
// - It takes |kMinNumAnalysesToGenerateReport| analyses for the first report
// to be generated. Subsequent analyises do not generate reports due to the
// cooldown mechanism.
const auto& report1_history = report1.alloc_breakdown_history();
EXPECT_EQ(kMinNumAnalysesToGenerateReport, report1_history.size());
for (size_t i = 0; i < report1_history.size(); ++i) {
const AllocationBreakdown& entry = report1_history[i];
const InternalVector<uint32_t>& counts_by_size = entry.counts_by_size;
ASSERT_GT(counts_by_size.size(), SizeToIndex(48));
// Check the two leaky sizes, 32 and 48.
uint32_t expected_leaky_count = (i + 1) * 32 + 2;
EXPECT_EQ(expected_leaky_count, counts_by_size[SizeToIndex(32)]);
EXPECT_EQ(expected_leaky_count, counts_by_size[SizeToIndex(48)]);
// Not related to the leaks, but there should be a dangling 16-byte
// allocation during each leak analysis, because it hasn't yet been freed.
EXPECT_EQ(1U, counts_by_size[SizeToIndex(16)]);
}
// Check call site count over time.
ASSERT_LT(kSizeSuspicionThreshold, report1_history.size());
// Initially, there has been no call site tracking.
for (size_t i = 0; i < kSizeSuspicionThreshold; ++i)
EXPECT_EQ(0U, report1_history[i].count_for_call_stack);
// Once |kSizeSuspicionThreshold| has been reached and call site tracking has
// begun, the number of allocations for the suspected call site should
// increase by 32 each frame. See comments above.
uint32_t expected_call_stack_count = 0;
for (size_t i = kSizeSuspicionThreshold; i < report1_history.size(); ++i) {
EXPECT_EQ(expected_call_stack_count,
report1_history[i].count_for_call_stack);
expected_call_stack_count += 32;
}
// |report2| should have the same size history and call stack history as
// |report1|.
EXPECT_TRUE(CompareReportAllocHistory(report1, report2));
}
TEST_F(LeakDetectorImplTest, SimpleLeakyFunctionWithLeakThreeTimes) {
// Run three iterations of the leaky function.
SimpleLeakyFunction(true /* enable_leaks */);
SimpleLeakyFunction(true /* enable_leaks */);
SimpleLeakyFunction(true /* enable_leaks */);
// SimpleLeakyFunction() should have generated three times as many leak
// reports, because the number of iterations is the same as the cooldown of
// LeakDetectorImpl. But the number of unique reports stored is still two.
EXPECT_EQ(6U, num_reports_generated_);
ASSERT_EQ(2U, stored_reports_.size());
// The reports should be stored in order of size.
// |report1| comes from the call site marked with kStack1, with size=32.
const InternalLeakReport& report1 = *stored_reports_.begin();
EXPECT_EQ(32U, report1.alloc_size_bytes());
ASSERT_EQ(kStack1.depth, report1.call_stack().size());
for (size_t i = 0; i < kStack1.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack1.stack[i]), report1.call_stack()[i])
<< i;
}
// |report2| comes from the call site marked with kStack2, with size=48.
const InternalLeakReport& report2 = *(++stored_reports_.begin());
EXPECT_EQ(48U, report2.alloc_size_bytes());
ASSERT_EQ(kStack2.depth, report2.call_stack().size());
for (size_t i = 0; i < kStack2.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack2.stack[i]), report2.call_stack()[i])
<< i;
}
const auto& report1_history = report1.alloc_breakdown_history();
EXPECT_EQ(32U, report1_history.size());
for (size_t i = 1; i < report1_history.size(); ++i) {
const InternalVector<uint32_t>& counts_by_size =
report1_history[i].counts_by_size;
const InternalVector<uint32_t>& prev_counts_by_size =
report1_history[i - 1].counts_by_size;
ASSERT_GT(counts_by_size.size(), SizeToIndex(48));
// Check the two leaky sizes, 32 and 48. At this point, the exact counts
// could be computed but the computations are too complex for a unit test.
// Instead, check that the counts increase by 32 from the previous count.
// Same goes for checking call site counts later.
EXPECT_GT(counts_by_size[SizeToIndex(32)], 0U);
EXPECT_GT(counts_by_size[SizeToIndex(48)], 0U);
EXPECT_EQ(prev_counts_by_size[SizeToIndex(32)] + 32,
counts_by_size[SizeToIndex(32)]);
EXPECT_EQ(prev_counts_by_size[SizeToIndex(48)] + 32,
counts_by_size[SizeToIndex(48)]);
// Not related to the leaks, but there should be a dangling 16-byte
// allocation during each leak analysis, because it hasn't yet been freed.
EXPECT_EQ(1U, counts_by_size[SizeToIndex(16)]);
}
// Check call site count over time.
ASSERT_LT(kSizeSuspicionThreshold, report1_history.size());
// Sufficient time has passed since the first report was generated. The entire
// alloc history should contain call site counts.
for (size_t i = 1; i < report1_history.size(); ++i) {
EXPECT_GT(report1_history[i].count_for_call_stack, 0U);
EXPECT_EQ(report1_history[i - 1].count_for_call_stack + 32,
report1_history[i].count_for_call_stack);
}
// |report2| should have the same size history and call stack history as
// |report1|.
EXPECT_TRUE(CompareReportAllocHistory(report1, report2));
}
TEST_F(LeakDetectorImplTest, JuliaSetNoLeak) {
JuliaSet(false /* enable_leaks */);
// JuliaSet() should have run cleanly without leaking.
EXPECT_EQ(total_num_allocs_, total_num_frees_);
EXPECT_EQ(0U, alloced_ptrs_.size());
EXPECT_EQ(0U, num_reports_generated_);
ASSERT_EQ(0U, stored_reports_.size());
}
TEST_F(LeakDetectorImplTest, JuliaSetWithLeak) {
JuliaSet(true /* enable_leaks */);
// JuliaSet() should have leaked some memory from two call sites.
EXPECT_GT(total_num_allocs_, total_num_frees_);
EXPECT_GT(alloced_ptrs_.size(), 0U);
EXPECT_GT(num_reports_generated_, 0U);
// There should be one unique leak report generated for each leaky call site.
ASSERT_EQ(2U, stored_reports_.size());
// The reports should be stored in order of size.
// |report1| comes from the call site in JuliaSet() corresponding to
// |kStack3|.
const InternalLeakReport& report1 = *stored_reports_.begin();
EXPECT_EQ(sizeof(Complex) + 40, report1.alloc_size_bytes());
ASSERT_EQ(kStack3.depth, report1.call_stack().size());
for (size_t i = 0; i < kStack3.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack3.stack[i]),
report1.call_stack()[i]) << i;
}
// |report2| comes from the call site in JuliaSet() corresponding to
// |kStack4|.
const InternalLeakReport& report2 = *(++stored_reports_.begin());
EXPECT_EQ(sizeof(Complex) + 52, report2.alloc_size_bytes());
ASSERT_EQ(kStack4.depth, report2.call_stack().size());
for (size_t i = 0; i < kStack4.depth; ++i) {
EXPECT_EQ(GetOffsetInMapping(kStack4.stack[i]),
report2.call_stack()[i]) << i;
}
// Check |report1|'s historical data.
const auto& report1_history = report1.alloc_breakdown_history();
// Computing the exact number of leak analyses is not trivial, but we know it
// must be at least |kSizeSuspicionThreshold + kCallStackSuspicionThreshold|
// in order to have generated a report.
EXPECT_GT(report1_history.size(),
kSizeSuspicionThreshold + kCallStackSuspicionThreshold);
// Make sure that the final allocation counts for the leaky sizes are larger
// than that of the non-leaky size by at least an order of magnitude.
const AllocationBreakdown& final_entry = *report1_history.rbegin();
const InternalVector<uint32_t>& counts_by_size = final_entry.counts_by_size;
uint32_t size_0_index = SizeToIndex(sizeof(Complex) + 24);
uint32_t size_1_index = SizeToIndex(sizeof(Complex) + 40);
uint32_t size_2_index = SizeToIndex(sizeof(Complex) + 52);
ASSERT_LT(size_0_index, counts_by_size.size());
ASSERT_LT(size_1_index, counts_by_size.size());
ASSERT_LT(size_2_index, counts_by_size.size());
EXPECT_GT(counts_by_size[size_1_index], counts_by_size[size_0_index] * 10);
EXPECT_GT(counts_by_size[size_2_index], counts_by_size[size_0_index] * 10);
// |report1| and |report2| do not necessarily have the same allocation history
// due to the different rates at which they were generated.
}
} // namespace leak_detector
} // namespace metrics
|