1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/omnibox/browser/scored_history_match.h"
#include <math.h>
#include <algorithm>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_offset_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "components/bookmarks/browser/bookmark_utils.h"
#include "components/omnibox/browser/history_url_provider.h"
#include "components/omnibox/browser/omnibox_field_trial.h"
#include "components/omnibox/browser/url_prefix.h"
namespace {
// The number of days of recency scores to precompute.
const int kDaysToPrecomputeRecencyScoresFor = 366;
// The number of raw term score buckets use; raw term scores greater this are
// capped at the score of the largest bucket.
const int kMaxRawTermScore = 30;
// Pre-computed information to speed up calculating recency scores.
// |days_ago_to_recency_score| is a simple array mapping how long ago a page was
// visited (in days) to the recency score we should assign it. This allows easy
// lookups of scores without requiring math. This is initialized by
// InitDaysAgoToRecencyScoreArray called by
// ScoredHistoryMatch::Init().
float days_ago_to_recency_score[kDaysToPrecomputeRecencyScoresFor];
// Pre-computed information to speed up calculating topicality scores.
// |raw_term_score_to_topicality_score| is a simple array mapping how raw terms
// scores (a weighted sum of the number of hits for the term, weighted by how
// important the hit is: hostname, path, etc.) to the topicality score we should
// assign it. This allows easy lookups of scores without requiring math. This
// is initialized by InitRawTermScoreToTopicalityScoreArray() called from
// ScoredHistoryMatch::Init().
float raw_term_score_to_topicality_score[kMaxRawTermScore];
// Precalculates raw_term_score_to_topicality_score, used in
// GetTopicalityScore().
void InitRawTermScoreToTopicalityScoreArray() {
for (int term_score = 0; term_score < kMaxRawTermScore; ++term_score) {
float topicality_score;
if (term_score < 10) {
// If the term scores less than 10 points (no full-credit hit, or
// no combination of hits that score that well), then the topicality
// score is linear in the term score.
topicality_score = 0.1 * term_score;
} else {
// For term scores of at least ten points, pass them through a log
// function so a score of 10 points gets a 1.0 (to meet up exactly
// with the linear component) and increases logarithmically until
// maxing out at 30 points, with computes to a score around 2.1.
topicality_score = (1.0 + 2.25 * log10(0.1 * term_score));
}
raw_term_score_to_topicality_score[term_score] = topicality_score;
}
}
// Pre-calculates days_ago_to_recency_score, used in GetRecencyScore().
void InitDaysAgoToRecencyScoreArray() {
for (int days_ago = 0; days_ago < kDaysToPrecomputeRecencyScoresFor;
days_ago++) {
int unnormalized_recency_score;
if (days_ago <= 4) {
unnormalized_recency_score = 100;
} else if (days_ago <= 14) {
// Linearly extrapolate between 4 and 14 days so 14 days has a score
// of 70.
unnormalized_recency_score = 70 + (14 - days_ago) * (100 - 70) / (14 - 4);
} else if (days_ago <= 31) {
// Linearly extrapolate between 14 and 31 days so 31 days has a score
// of 50.
unnormalized_recency_score = 50 + (31 - days_ago) * (70 - 50) / (31 - 14);
} else if (days_ago <= 90) {
// Linearly extrapolate between 30 and 90 days so 90 days has a score
// of 30.
unnormalized_recency_score = 30 + (90 - days_ago) * (50 - 30) / (90 - 30);
} else {
// Linearly extrapolate between 90 and 365 days so 365 days has a score
// of 10.
unnormalized_recency_score =
10 + (365 - days_ago) * (20 - 10) / (365 - 90);
}
days_ago_to_recency_score[days_ago] = unnormalized_recency_score / 100.0;
if (days_ago > 0) {
DCHECK_LE(days_ago_to_recency_score[days_ago],
days_ago_to_recency_score[days_ago - 1]);
}
}
}
} // namespace
// static
bool ScoredHistoryMatch::also_do_hup_like_scoring_;
float ScoredHistoryMatch::bookmark_value_;
float ScoredHistoryMatch::typed_value_;
bool ScoredHistoryMatch::fix_few_visits_bug_;
bool ScoredHistoryMatch::frequency_uses_sum_;
size_t ScoredHistoryMatch::max_visits_to_score_;
bool ScoredHistoryMatch::allow_tld_matches_;
bool ScoredHistoryMatch::allow_scheme_matches_;
size_t ScoredHistoryMatch::num_title_words_to_allow_;
float ScoredHistoryMatch::topicality_threshold_;
ScoredHistoryMatch::ScoreMaxRelevances*
ScoredHistoryMatch::relevance_buckets_override_ = nullptr;
OmniboxFieldTrial::NumMatchesScores*
ScoredHistoryMatch::matches_to_specificity_override_ = nullptr;
ScoredHistoryMatch::ScoredHistoryMatch()
: ScoredHistoryMatch(history::URLRow(),
VisitInfoVector(),
base::string16(),
String16Vector(),
WordStarts(),
RowWordStarts(),
false,
1,
base::Time::Max()) {}
ScoredHistoryMatch::ScoredHistoryMatch(
const history::URLRow& row,
const VisitInfoVector& visits,
const base::string16& lower_string,
const String16Vector& terms_vector,
const WordStarts& terms_to_word_starts_offsets,
const RowWordStarts& word_starts,
bool is_url_bookmarked,
size_t num_matching_pages,
base::Time now)
: HistoryMatch(row, 0, false, false), raw_score(0) {
// NOTE: Call Init() before doing any validity checking to ensure that the
// class is always initialized after an instance has been constructed. In
// particular, this ensures that the class is initialized after an instance
// has been constructed via the no-args constructor.
ScoredHistoryMatch::Init();
// Figure out where each search term appears in the URL and/or page title
// so that we can score as well as provide autocomplete highlighting.
base::OffsetAdjuster::Adjustments adjustments;
GURL gurl = row.url();
base::string16 url =
bookmarks::CleanUpUrlForMatching(gurl, &adjustments);
base::string16 title = bookmarks::CleanUpTitleForMatching(row.title());
int term_num = 0;
for (const auto& term : terms_vector) {
TermMatches url_term_matches = MatchTermInString(term, url, term_num);
TermMatches title_term_matches = MatchTermInString(term, title, term_num);
if (url_term_matches.empty() && title_term_matches.empty()) {
// A term was not found in either URL or title - reject.
return;
}
url_matches.insert(url_matches.end(), url_term_matches.begin(),
url_term_matches.end());
title_matches.insert(title_matches.end(), title_term_matches.begin(),
title_term_matches.end());
++term_num;
}
// Sort matches by offset, which is needed for GetTopicalityScore() to
// function correctly.
url_matches = SortMatches(url_matches);
title_matches = SortMatches(title_matches);
// We can likely inline autocomplete a match if:
// 1) there is only one search term
// 2) AND the match begins immediately after one of the prefixes in
// URLPrefix such as http://www and https:// (note that one of these
// is the empty prefix, for cases where the user has typed the scheme)
// 3) AND the search string does not end in whitespace (making it look to
// the IMUI as though there is a single search term when actually there
// is a second, empty term).
// |best_inlineable_prefix| stores the inlineable prefix computed in
// clause (2) or NULL if no such prefix exists. (The URL is not inlineable.)
// Note that using the best prefix here means that when multiple
// prefixes match, we'll choose to inline following the longest one.
// For a URL like "http://www.washingtonmutual.com", this means
// typing "w" will inline "ashington..." instead of "ww.washington...".
// We cannot be sure about inlining at this stage because this test depends
// on the cleaned up URL, which is not necessarily the same as the URL string
// used in HistoryQuick provider to construct the match. For instance, the
// cleaned up URL has special characters unescaped so as to allow matches
// with them. This aren't unescaped when HistoryQuick displays the URL;
// hence a match in the URL that involves matching the unescaped special
// characters may not be able to be inlined given how HistoryQuick displays
// it. This happens in HistoryQuickProvider::QuickMatchToACMatch().
bool likely_can_inline = false;
if (!url_matches.empty() && (terms_vector.size() == 1) &&
!base::IsUnicodeWhitespace(*lower_string.rbegin())) {
const base::string16 gurl_spec = base::UTF8ToUTF16(gurl.spec());
const URLPrefix* best_inlineable_prefix =
URLPrefix::BestURLPrefix(gurl_spec, terms_vector[0]);
if (best_inlineable_prefix) {
// When inline autocompleting this match, we're going to use the part of
// the URL following the end of the matching text. However, it's possible
// that FormatUrl(), when formatting this suggestion for display,
// mucks with the text. We need to ensure that the text we're thinking
// about highlighting isn't in the middle of a mucked sequence. In
// particular, for the omnibox input of "x" or "xn", we may get a match
// in a punycoded domain name such as http://www.xn--blahblah.com/.
// When FormatUrl() processes the xn--blahblah part of the hostname, it'll
// transform the whole thing into a series of unicode characters. It's
// impossible to give the user an inline autocompletion of the text
// following "x" or "xn" in this case because those characters no longer
// exist in the displayed URL string.
size_t offset =
best_inlineable_prefix->prefix.length() + terms_vector[0].length();
base::OffsetAdjuster::UnadjustOffset(adjustments, &offset);
if (offset != base::string16::npos) {
// Initialize innermost_match.
// The idea here is that matches that occur in the scheme or
// "www." are worse than matches which don't. For the URLs
// "http://www.google.com" and "http://wellsfargo.com", we want
// the omnibox input "w" to cause the latter URL to rank higher
// than the former. Note that this is not the same as checking
// whether one match's inlinable prefix has more components than
// the other match's, since in this example, both matches would
// have an inlinable prefix of "http://", which is one component.
//
// Instead, we look for the overall best (i.e., most components)
// prefix of the current URL, and then check whether the inlinable
// prefix has that many components. If it does, this is an
// "innermost" match, and should be boosted. In the example
// above, the best prefixes for the two URLs have two and one
// components respectively, while the inlinable prefixes each
// have one component; this means the first match is not innermost
// and the second match is innermost, resulting in us boosting the
// second match.
//
// Now, the code that implements this.
// The deepest prefix for this URL regardless of where the match is.
const URLPrefix* best_prefix =
URLPrefix::BestURLPrefix(gurl_spec, base::string16());
DCHECK(best_prefix);
// If the URL is likely to be inlineable, we must have a match. Note
// the prefix that makes it inlineable may be empty.
likely_can_inline = true;
innermost_match = (best_inlineable_prefix->num_components ==
best_prefix->num_components);
}
}
}
const float topicality_score = GetTopicalityScore(
terms_vector.size(), url, terms_to_word_starts_offsets, word_starts);
const float frequency_score = GetFrequency(now, is_url_bookmarked, visits);
const float specificity_score =
GetDocumentSpecificityScore(num_matching_pages);
raw_score = base::saturated_cast<int>(GetFinalRelevancyScore(
topicality_score, frequency_score, specificity_score));
if (also_do_hup_like_scoring_ && likely_can_inline) {
// HistoryURL-provider-like scoring gives any match that is
// capable of being inlined a certain minimum score. Some of these
// are given a higher score that lets them be shown in inline.
// This test here derives from the test in
// HistoryURLProvider::PromoteMatchForInlineAutocomplete().
const bool promote_to_inline =
(row.typed_count() > 1) || (IsHostOnly() && (row.typed_count() == 1));
int hup_like_score =
promote_to_inline
? HistoryURLProvider::kScoreForBestInlineableResult
: HistoryURLProvider::kBaseScoreForNonInlineableResult;
// Also, if the user types the hostname of a host with a typed
// visit, then everything from that host get given inlineable scores
// (because the URL-that-you-typed will go first and everything
// else will be assigned one minus the previous score, as coded
// at the end of HistoryURLProvider::DoAutocomplete().
if (base::UTF8ToUTF16(gurl.host()) == terms_vector[0])
hup_like_score = HistoryURLProvider::kScoreForBestInlineableResult;
// HistoryURLProvider has the function PromoteOrCreateShorterSuggestion()
// that's meant to promote prefixes of the best match (if they've
// been visited enough related to the best match) or
// create/promote host-only suggestions (even if they've never
// been typed). The code is complicated and we don't try to
// duplicate the logic here. Instead, we handle a simple case: in
// low-typed-count ranges, give host-only matches (i.e.,
// http://www.foo.com/ vs. http://www.foo.com/bar.html) a boost so
// that the host-only match outscores all the other matches that
// would normally have the same base score. This behavior is not
// identical to what happens in HistoryURLProvider even in these
// low typed count ranges--sometimes it will create/promote when
// this test does not (indeed, we cannot create matches like HUP
// can) and vice versa--but the underlying philosophy is similar.
if (!promote_to_inline && IsHostOnly())
hup_like_score++;
// All the other logic to goes into hup-like-scoring happens in
// the tie-breaker case of MatchScoreGreater().
// Incorporate hup_like_score into raw_score.
raw_score = std::max(raw_score, hup_like_score);
}
url_matches = DeoverlapMatches(url_matches);
title_matches = DeoverlapMatches(title_matches);
// Now that we're done processing this entry, correct the offsets of the
// matches in |url_matches| so they point to offsets in the original URL
// spec, not the cleaned-up URL string that we used for matching.
std::vector<size_t> offsets = OffsetsFromTermMatches(url_matches);
base::OffsetAdjuster::UnadjustOffsets(adjustments, &offsets);
url_matches = ReplaceOffsetsInTermMatches(url_matches, offsets);
}
ScoredHistoryMatch::ScoredHistoryMatch(const ScoredHistoryMatch& other) =
default;
ScoredHistoryMatch::~ScoredHistoryMatch() {
}
// Comparison function for sorting ScoredMatches by their scores with
// intelligent tie-breaking.
bool ScoredHistoryMatch::MatchScoreGreater(const ScoredHistoryMatch& m1,
const ScoredHistoryMatch& m2) {
if (m1.raw_score != m2.raw_score)
return m1.raw_score > m2.raw_score;
// This tie-breaking logic is inspired by / largely copied from the
// ordering logic in history_url_provider.cc CompareHistoryMatch().
// A URL that has been typed at all is better than one that has never been
// typed. (Note "!"s on each side.)
if (!m1.url_info.typed_count() != !m2.url_info.typed_count())
return m1.url_info.typed_count() > m2.url_info.typed_count();
// Innermost matches (matches after any scheme or "www.") are better than
// non-innermost matches.
if (m1.innermost_match != m2.innermost_match)
return m1.innermost_match;
// URLs that have been typed more often are better.
if (m1.url_info.typed_count() != m2.url_info.typed_count())
return m1.url_info.typed_count() > m2.url_info.typed_count();
// For URLs that have each been typed once, a host (alone) is better
// than a page inside.
if (m1.url_info.typed_count() == 1) {
if (m1.IsHostOnly() != m2.IsHostOnly())
return m1.IsHostOnly();
}
// URLs that have been visited more often are better.
if (m1.url_info.visit_count() != m2.url_info.visit_count())
return m1.url_info.visit_count() > m2.url_info.visit_count();
// URLs that have been visited more recently are better.
return m1.url_info.last_visit() > m2.url_info.last_visit();
}
// static
TermMatches ScoredHistoryMatch::FilterTermMatchesByWordStarts(
const TermMatches& term_matches,
const WordStarts& terms_to_word_starts_offsets,
const WordStarts& word_starts,
size_t start_pos,
size_t end_pos) {
// Return early if no filtering is needed.
if (start_pos == std::string::npos)
return term_matches;
TermMatches filtered_matches;
WordStarts::const_iterator next_word_starts = word_starts.begin();
WordStarts::const_iterator end_word_starts = word_starts.end();
for (const auto& term_match : term_matches) {
const size_t term_offset =
terms_to_word_starts_offsets[term_match.term_num];
// Advance next_word_starts until it's >= the position of the term we're
// considering (adjusted for where the word begins within the term).
while ((next_word_starts != end_word_starts) &&
(*next_word_starts < (term_match.offset + term_offset)))
++next_word_starts;
// Add the match if it's before the position we start filtering at or
// after the position we stop filtering at (assuming we have a position
// to stop filtering at) or if it's at a word boundary.
if ((term_match.offset < start_pos) ||
((end_pos != std::string::npos) && (term_match.offset >= end_pos)) ||
((next_word_starts != end_word_starts) &&
(*next_word_starts == term_match.offset + term_offset)))
filtered_matches.push_back(term_match);
}
return filtered_matches;
}
// static
void ScoredHistoryMatch::Init() {
static bool initialized = false;
if (initialized)
return;
initialized = true;
also_do_hup_like_scoring_ = OmniboxFieldTrial::HQPAlsoDoHUPLikeScoring();
bookmark_value_ = OmniboxFieldTrial::HQPBookmarkValue();
typed_value_ = OmniboxFieldTrial::HQPTypedValue();
max_visits_to_score_ = OmniboxFieldTrial::HQPMaxVisitsToScore();
frequency_uses_sum_ = OmniboxFieldTrial::HQPFreqencyUsesSum();
fix_few_visits_bug_ = OmniboxFieldTrial::HQPFixFewVisitsBug();
allow_tld_matches_ = OmniboxFieldTrial::HQPAllowMatchInTLDValue();
allow_scheme_matches_ = OmniboxFieldTrial::HQPAllowMatchInSchemeValue();
num_title_words_to_allow_ = OmniboxFieldTrial::HQPNumTitleWordsToAllow();
topicality_threshold_ =
OmniboxFieldTrial::HQPExperimentalTopicalityThreshold();
InitRawTermScoreToTopicalityScoreArray();
InitDaysAgoToRecencyScoreArray();
}
float ScoredHistoryMatch::GetTopicalityScore(
const int num_terms,
const base::string16& url,
const WordStarts& terms_to_word_starts_offsets,
const RowWordStarts& word_starts) {
// A vector that accumulates per-term scores. The strongest match--a
// match in the hostname at a word boundary--is worth 10 points.
// Everything else is less. In general, a match that's not at a word
// boundary is worth about 1/4th or 1/5th of a match at the word boundary
// in the same part of the URL/title.
DCHECK_GT(num_terms, 0);
std::vector<int> term_scores(num_terms, 0);
WordStarts::const_iterator next_word_starts =
word_starts.url_word_starts_.begin();
WordStarts::const_iterator end_word_starts =
word_starts.url_word_starts_.end();
const size_t question_mark_pos = url.find('?');
const size_t colon_pos = url.find(':');
// The + 3 skips the // that probably appears in the protocol
// after the colon. If the protocol doesn't have two slashes after
// the colon, that's okay--all this ends up doing is starting our
// search for the next / a few characters into the hostname. The
// only times this can cause problems is if we have a protocol without
// a // after the colon and the hostname is only one or two characters.
// This isn't worth worrying about.
const size_t end_of_hostname_pos = (colon_pos != std::string::npos)
? url.find('/', colon_pos + 3)
: url.find('/');
size_t last_part_of_hostname_pos = (end_of_hostname_pos != std::string::npos)
? url.rfind('.', end_of_hostname_pos)
: url.rfind('.');
// Loop through all URL matches and score them appropriately.
// First, filter all matches not at a word boundary and in the path (or
// later).
url_matches = FilterTermMatchesByWordStarts(
url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
end_of_hostname_pos, std::string::npos);
if (colon_pos != std::string::npos) {
// Also filter matches not at a word boundary and in the scheme.
url_matches = FilterTermMatchesByWordStarts(
url_matches, terms_to_word_starts_offsets, word_starts.url_word_starts_,
0, colon_pos);
}
for (const auto& url_match : url_matches) {
// Calculate the offset in the URL string where the meaningful (word) part
// of the term starts. This takes into account times when a term starts
// with punctuation such as "/foo".
const size_t term_word_offset =
url_match.offset + terms_to_word_starts_offsets[url_match.term_num];
// Advance next_word_starts until it's >= the position of the term we're
// considering (adjusted for where the word begins within the term).
while ((next_word_starts != end_word_starts) &&
(*next_word_starts < term_word_offset)) {
++next_word_starts;
}
const bool at_word_boundary = (next_word_starts != end_word_starts) &&
(*next_word_starts == term_word_offset);
if ((question_mark_pos != std::string::npos) &&
(term_word_offset >= question_mark_pos)) {
// The match is in a CGI ?... fragment.
DCHECK(at_word_boundary);
term_scores[url_match.term_num] += 5;
} else if ((end_of_hostname_pos != std::string::npos) &&
(term_word_offset >= end_of_hostname_pos)) {
// The match is in the path.
DCHECK(at_word_boundary);
term_scores[url_match.term_num] += 8;
} else if ((colon_pos == std::string::npos) ||
(term_word_offset >= colon_pos)) {
// The match is in the hostname.
if ((last_part_of_hostname_pos == std::string::npos) ||
(term_word_offset < last_part_of_hostname_pos)) {
// Either there are no dots in the hostname or this match isn't
// the last dotted component.
term_scores[url_match.term_num] += at_word_boundary ? 10 : 2;
} else {
// The match is in the last part of a dotted hostname (usually this
// is the top-level domain .com, .net, etc.).
if (allow_tld_matches_)
term_scores[url_match.term_num] += at_word_boundary ? 10 : 0;
}
} else {
// The match is in the protocol (a.k.a. scheme).
// Matches not at a word boundary should have been filtered already.
DCHECK(at_word_boundary);
match_in_scheme = true;
if (allow_scheme_matches_)
term_scores[url_match.term_num] += 10;
}
}
// Now do the analogous loop over all matches in the title.
next_word_starts = word_starts.title_word_starts_.begin();
end_word_starts = word_starts.title_word_starts_.end();
size_t word_num = 0;
title_matches = FilterTermMatchesByWordStarts(
title_matches, terms_to_word_starts_offsets,
word_starts.title_word_starts_, 0, std::string::npos);
for (const auto& title_match : title_matches) {
// Calculate the offset in the title string where the meaningful (word) part
// of the term starts. This takes into account times when a term starts
// with punctuation such as "/foo".
const size_t term_word_offset =
title_match.offset + terms_to_word_starts_offsets[title_match.term_num];
// Advance next_word_starts until it's >= the position of the term we're
// considering (adjusted for where the word begins within the term).
while ((next_word_starts != end_word_starts) &&
(*next_word_starts < term_word_offset)) {
++next_word_starts;
++word_num;
}
if (word_num >= num_title_words_to_allow_)
break; // only count the first ten words
DCHECK(next_word_starts != end_word_starts);
DCHECK_EQ(*next_word_starts, term_word_offset) << "not at word boundary";
term_scores[title_match.term_num] += 8;
}
// TODO(mpearson): Restore logic for penalizing out-of-order matches.
// (Perhaps discount them by 0.8?)
// TODO(mpearson): Consider: if the earliest match occurs late in the string,
// should we discount it?
// TODO(mpearson): Consider: do we want to score based on how much of the
// input string the input covers? (I'm leaning toward no.)
// Compute the topicality_score as the sum of transformed term_scores.
float topicality_score = 0;
for (int term_score : term_scores) {
// Drop this URL if it seems like a term didn't appear or, more precisely,
// didn't appear in a part of the URL or title that we trust enough
// to give it credit for. For instance, terms that appear in the middle
// of a CGI parameter get no credit. Almost all the matches dropped
// due to this test would look stupid if shown to the user.
if (term_score == 0)
return 0;
topicality_score += raw_term_score_to_topicality_score[std::min(
term_score, kMaxRawTermScore - 1)];
}
// TODO(mpearson): If there are multiple terms, consider taking the
// geometric mean of per-term scores rather than the arithmetic mean.
const float final_topicality_score = topicality_score / num_terms;
// Demote the URL if the topicality score is less than threshold.
if (final_topicality_score < topicality_threshold_) {
return 0.0;
}
return final_topicality_score;
}
float ScoredHistoryMatch::GetRecencyScore(int last_visit_days_ago) const {
// Lookup the score in days_ago_to_recency_score, treating
// everything older than what we've precomputed as the oldest thing
// we've precomputed. The std::max is to protect against corruption
// in the database (in case last_visit_days_ago is negative).
return days_ago_to_recency_score[std::max(
std::min(last_visit_days_ago, kDaysToPrecomputeRecencyScoresFor - 1), 0)];
}
float ScoredHistoryMatch::GetFrequency(const base::Time& now,
const bool bookmarked,
const VisitInfoVector& visits) const {
// Compute the weighted sum of |value_of_transition| over the last at most
// |max_visits_to_score_| visits, where each visit is weighted using
// GetRecencyScore() based on how many days ago it happened.
float summed_visit_points = 0;
auto visits_end =
visits.begin() + std::min(visits.size(), max_visits_to_score_);
// Visits should be in newest to oldest order.
DCHECK(std::adjacent_find(
visits.begin(), visits_end,
[](const history::VisitInfo& a, const history::VisitInfo& b) {
return a.first < b.first;
}) == visits_end);
for (auto i = visits.begin(); i != visits_end; ++i) {
const bool is_page_transition_typed =
ui::PageTransitionCoreTypeIs(i->second, ui::PAGE_TRANSITION_TYPED);
float value_of_transition = is_page_transition_typed ? typed_value_ : 1;
if (bookmarked)
value_of_transition = std::max(value_of_transition, bookmark_value_);
const float bucket_weight = GetRecencyScore((now - i->first).InDays());
summed_visit_points += (value_of_transition * bucket_weight);
}
if (frequency_uses_sum_)
return summed_visit_points;
// Compute the average weighted value_of_transition and return it.
// Use |max_visits_to_score_| as the denominator for the average regardless of
// how many visits there were in order to penalize a match that has
// fewer visits than kMaxVisitsToScore.
if (fix_few_visits_bug_)
return summed_visit_points / ScoredHistoryMatch::max_visits_to_score_;
return visits.size() * summed_visit_points /
ScoredHistoryMatch::max_visits_to_score_;
}
float ScoredHistoryMatch::GetDocumentSpecificityScore(
size_t num_matching_pages) const {
// A mapping from the number of matching pages to their associated document
// specificity scores. See omnibox_field_trial.h for more details.
CR_DEFINE_STATIC_LOCAL(OmniboxFieldTrial::NumMatchesScores,
default_matches_to_specificity,
(OmniboxFieldTrial::HQPNumMatchesScores()));
OmniboxFieldTrial::NumMatchesScores* matches_to_specificity =
matches_to_specificity_override_ ? matches_to_specificity_override_
: &default_matches_to_specificity;
// The floating point value below must be less than the lowest score the
// server would send down.
OmniboxFieldTrial::NumMatchesScores::const_iterator it = std::upper_bound(
matches_to_specificity->begin(), matches_to_specificity->end(),
std::pair<size_t, double>{num_matching_pages, -1});
return (it != matches_to_specificity->end()) ? it->second : 1.0;
};
// static
float ScoredHistoryMatch::GetFinalRelevancyScore(float topicality_score,
float frequency_score,
float specificity_score) {
// |relevance_buckets| gives a mapping from intemerdiate score to the final
// relevance score.
CR_DEFINE_STATIC_LOCAL(ScoreMaxRelevances, default_relevance_buckets,
(GetHQPBuckets()));
ScoreMaxRelevances* relevance_buckets = relevance_buckets_override_
? relevance_buckets_override_
: &default_relevance_buckets;
DCHECK(!relevance_buckets->empty());
DCHECK_EQ(0.0, (*relevance_buckets)[0].first);
if (topicality_score == 0)
return 0;
// Here's how to interpret intermediate_score: Suppose the omnibox has one
// input term. Suppose the input matches many documents. (This implies
// specificity_score == 1.0.) Suppose we have a URL for which the omnibox
// input term has a single URL hostname hit at a word boundary. (This
// implies topicality_score = 1.0.). Then the intermediate_score for
// this URL will depend entirely on the frequency_score with
// this interpretation:
// - a single typed visit more than three months ago, no other visits -> 0.2
// - a visit every three days, no typed visits -> 0.706
// - a visit every day, no typed visits -> 0.916
// - a single typed visit yesterday, no other visits -> 2.0
// - a typed visit once a week -> 11.77
// - a typed visit every three days -> 14.12
// - at least ten typed visits today -> 20.0 (maximum score)
//
// The below code maps intermediate_score to the range [0, 1399].
// For example:
// The default scoring buckets: "0.0:400,1.5:600,12.0:1300,20.0:1399"
// We will linearly interpolate the scores between:
// 0 to 1.5 --> 400 to 600
// 1.5 to 12.0 --> 600 to 1300
// 12.0 to 20.0 --> 1300 to 1399
// >= 20.0 --> 1399
//
// The score maxes out at 1399 (i.e., cannot beat a good inlineable result
// from HistoryURL provider).
const float intermediate_score =
topicality_score * frequency_score * specificity_score;
// Find the threshold where intermediate score is greater than bucket.
size_t i = 1;
for (; i < relevance_buckets->size(); ++i) {
const ScoreMaxRelevance& bucket = (*relevance_buckets)[i];
if (intermediate_score >= bucket.first) {
continue;
}
const ScoreMaxRelevance& previous_bucket = (*relevance_buckets)[i - 1];
const float slope = ((bucket.second - previous_bucket.second) /
(bucket.first - previous_bucket.first));
return (previous_bucket.second +
(slope * (intermediate_score - previous_bucket.first)));
}
// It will reach this stage when the score is > highest bucket score.
// Return the highest bucket score.
return (*relevance_buckets)[i - 1].second;
}
// static
std::vector<ScoredHistoryMatch::ScoreMaxRelevance>
ScoredHistoryMatch::GetHQPBuckets() {
// Start with the default buckets and override them if appropriate.
std::string relevance_buckets_str =
"0.0:400,1.5:600,5.0:900,10.5:1203,15.0:1300,20.0:1399";
std::string experimental_scoring_buckets =
OmniboxFieldTrial::HQPExperimentalScoringBuckets();
if (!experimental_scoring_buckets.empty())
relevance_buckets_str = experimental_scoring_buckets;
return GetHQPBucketsFromString(relevance_buckets_str);
}
// static
ScoredHistoryMatch::ScoreMaxRelevances
ScoredHistoryMatch::GetHQPBucketsFromString(const std::string& buckets_str) {
DCHECK(!buckets_str.empty());
base::StringPairs kv_pairs;
if (!base::SplitStringIntoKeyValuePairs(buckets_str, ':', ',', &kv_pairs))
return ScoreMaxRelevances();
ScoreMaxRelevances hqp_buckets;
for (base::StringPairs::const_iterator it = kv_pairs.begin();
it != kv_pairs.end(); ++it) {
ScoreMaxRelevance bucket;
bool is_valid_intermediate_score =
base::StringToDouble(it->first, &bucket.first);
DCHECK(is_valid_intermediate_score);
bool is_valid_hqp_score = base::StringToInt(it->second, &bucket.second);
DCHECK(is_valid_hqp_score);
hqp_buckets.push_back(bucket);
}
return hqp_buckets;
}
|