1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/os_crypt/os_crypt.h"
#include <stddef.h>
#include <algorithm>
#include <iterator>
#include <memory>
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/lock.h"
#include "components/os_crypt/key_storage_linux.h"
#include "crypto/encryptor.h"
#include "crypto/symmetric_key.h"
namespace {
// Salt for Symmetric key derivation.
const char kSalt[] = "saltysalt";
// Key size required for 128 bit AES.
const size_t kDerivedKeySizeInBits = 128;
// Constant for Symmetic key derivation.
const size_t kEncryptionIterations = 1;
// Size of initialization vector for AES 128-bit.
const size_t kIVBlockSizeAES128 = 16;
// Password version. V10 means that the hardcoded password will be used.
// V11 means that a password is/will be stored using an OS-level library (e.g
// Libsecret). V11 will not be used if such a library is not available.
// Used for array indexing.
enum Version {
V10 = 0,
V11 = 1,
};
// Prefix for cipher text returned by obfuscation version. We prefix the
// ciphertext with this string so that future data migration can detect
// this and migrate to full encryption without data loss.
const char kObfuscationPrefix[][4] = {
"v10", "v11",
};
struct Cache {
std::unique_ptr<KeyStorageLinux> key_storage_cache;
std::unique_ptr<std::string> password_v10_cache;
std::unique_ptr<std::string> password_v11_cache;
bool is_key_storage_cached;
bool is_password_v11_cached;
// Guards access to |g_cache|, making lazy initialization of individual parts
// thread safe.
base::Lock lock;
};
base::LazyInstance<Cache>::Leaky g_cache = LAZY_INSTANCE_INITIALIZER;
// Lazy acquisition and caching of a KeyStorage. Will be null if no service is
// found.
KeyStorageLinux* GetKeyStorage() {
if (!g_cache.Get().is_key_storage_cached) {
g_cache.Get().is_key_storage_cached = true;
g_cache.Get().key_storage_cache = KeyStorageLinux::CreateService();
}
return g_cache.Get().key_storage_cache.get();
}
// Pointer to a function that creates and returns the |KeyStorage| instance to
// be used. The function maintains ownership of the pointer.
KeyStorageLinux* (*g_key_storage_provider)() = &GetKeyStorage;
// Returns a cached string of "peanuts". Is thread-safe.
std::string* GetPasswordV10() {
base::AutoLock auto_lock(g_cache.Get().lock);
if (!g_cache.Get().password_v10_cache.get()) {
g_cache.Get().password_v10_cache.reset(new std::string("peanuts"));
}
return g_cache.Get().password_v10_cache.get();
}
// Caches and returns the password from the KeyStorage or null if there is no
// service. Is thread-safe.
std::string* GetPasswordV11() {
base::AutoLock auto_lock(g_cache.Get().lock);
if (!g_cache.Get().is_password_v11_cached) {
g_cache.Get().password_v11_cache.reset(
g_key_storage_provider()
? new std::string(g_key_storage_provider()->GetKey())
: nullptr);
g_cache.Get().is_password_v11_cached = true;
}
return g_cache.Get().password_v11_cache.get();
}
// Pointers to functions that return a password for deriving the encryption key.
// One function for each supported password version (see Version enum).
std::string* (*g_get_password[])() = {
&GetPasswordV10, &GetPasswordV11,
};
// Generates a newly allocated SymmetricKey object based on a password.
// Ownership of the key is passed to the caller. Returns null key if a key
// generation error occurs.
std::unique_ptr<crypto::SymmetricKey> GetEncryptionKey(Version version) {
std::string salt(kSalt);
std::string* password = g_get_password[version]();
if (!password)
return nullptr;
// Create an encryption key from our password and salt.
std::unique_ptr<crypto::SymmetricKey> encryption_key(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, *password, salt, kEncryptionIterations,
kDerivedKeySizeInBits));
DCHECK(encryption_key);
return encryption_key;
}
} // namespace
// static
bool OSCrypt::EncryptString16(const base::string16& plaintext,
std::string* ciphertext) {
return EncryptString(base::UTF16ToUTF8(plaintext), ciphertext);
}
// static
bool OSCrypt::DecryptString16(const std::string& ciphertext,
base::string16* plaintext) {
std::string utf8;
if (!DecryptString(ciphertext, &utf8))
return false;
*plaintext = base::UTF8ToUTF16(utf8);
return true;
}
// static
bool OSCrypt::EncryptString(const std::string& plaintext,
std::string* ciphertext) {
if (plaintext.empty()) {
ciphertext->clear();
return true;
}
// If we are able to create a V11 key (i.e. a KeyStorage was available), then
// we'll use it. If not, we'll use V10.
Version version = Version::V11;
std::unique_ptr<crypto::SymmetricKey> encryption_key(
GetEncryptionKey(version));
if (!encryption_key) {
version = Version::V10;
encryption_key = GetEncryptionKey(version);
}
if (!encryption_key)
return false;
std::string iv(kIVBlockSizeAES128, ' ');
crypto::Encryptor encryptor;
if (!encryptor.Init(encryption_key.get(), crypto::Encryptor::CBC, iv))
return false;
if (!encryptor.Encrypt(plaintext, ciphertext))
return false;
// Prefix the cipher text with version information.
ciphertext->insert(0, kObfuscationPrefix[version]);
return true;
}
// static
bool OSCrypt::DecryptString(const std::string& ciphertext,
std::string* plaintext) {
if (ciphertext.empty()) {
plaintext->clear();
return true;
}
// Check that the incoming ciphertext was encrypted and with what version.
// Credit card numbers are current legacy unencrypted data, so false match
// with prefix won't happen.
Version version;
if (base::StartsWith(ciphertext, kObfuscationPrefix[Version::V10],
base::CompareCase::SENSITIVE)) {
version = Version::V10;
} else if (base::StartsWith(ciphertext, kObfuscationPrefix[Version::V11],
base::CompareCase::SENSITIVE)) {
version = Version::V11;
} else {
// If the prefix is not found then we'll assume we're dealing with
// old data saved as clear text and we'll return it directly.
*plaintext = ciphertext;
return true;
}
std::unique_ptr<crypto::SymmetricKey> encryption_key(
GetEncryptionKey(version));
if (!encryption_key)
return false;
std::string iv(kIVBlockSizeAES128, ' ');
crypto::Encryptor encryptor;
if (!encryptor.Init(encryption_key.get(), crypto::Encryptor::CBC, iv))
return false;
// Strip off the versioning prefix before decrypting.
std::string raw_ciphertext =
ciphertext.substr(strlen(kObfuscationPrefix[version]));
if (!encryptor.Decrypt(raw_ciphertext, plaintext))
return false;
return true;
}
// static
void OSCrypt::SetStore(const std::string& store_type) {
// Changing the targeted password store makes no sense after initializing.
DCHECK(!g_cache.Get().is_key_storage_cached);
KeyStorageLinux::SetStore(store_type);
}
// static
void OSCrypt::SetProductName(const std::string& product_name) {
// Setting the product name makes no sense after initializing.
DCHECK(!g_cache.Get().is_key_storage_cached);
KeyStorageLinux::SetProductName(product_name);
}
// static
void OSCrypt::SetMainThreadRunner(
scoped_refptr<base::SingleThreadTaskRunner> main_thread_runner) {
// Setting the task runner makes no sense after initializing.
DCHECK(!g_cache.Get().is_key_storage_cached);
KeyStorageLinux::SetMainThreadRunner(main_thread_runner);
}
void UseMockKeyStorageForTesting(KeyStorageLinux* (*get_key_storage_mock)(),
std::string* (*get_password_v11_mock)()) {
// Save the real implementation to restore it later.
static bool is_get_password_saved = false;
static std::string* (*get_password_save[arraysize(g_get_password)])();
if (!is_get_password_saved) {
std::copy(std::begin(g_get_password), std::end(g_get_password),
std::begin(get_password_save));
is_get_password_saved = true;
}
if (get_key_storage_mock && get_password_v11_mock) {
// Bypass calling KeyStorage::CreateService and caching of the key for V11
if (get_password_v11_mock)
g_get_password[Version::V11] = get_password_v11_mock;
// OSCrypt will determine the encryption version by checking if a
// |KeyStorage| instance can be created. Enable V11 by returning the mock.
if (get_key_storage_mock)
g_key_storage_provider = get_key_storage_mock;
} else {
// Restore real implementation
std::copy(std::begin(get_password_save), std::end(get_password_save),
std::begin(g_get_password));
g_key_storage_provider = &GetKeyStorage;
}
}
|