1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/user_prefs/tracked/pref_hash_calculator.h"
#include <memory>
#include <string>
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/strings/string_util.h"
#include "base/values.h"
#include "testing/gtest/include/gtest/gtest.h"
TEST(PrefHashCalculatorTest, TestCurrentAlgorithm) {
base::StringValue string_value_1("string value 1");
base::StringValue string_value_2("string value 2");
base::DictionaryValue dictionary_value_1;
dictionary_value_1.SetInteger("int value", 1);
dictionary_value_1.Set("nested empty map", new base::DictionaryValue);
base::DictionaryValue dictionary_value_1_equivalent;
dictionary_value_1_equivalent.SetInteger("int value", 1);
base::DictionaryValue dictionary_value_2;
dictionary_value_2.SetInteger("int value", 2);
PrefHashCalculator calc1("seed1", "deviceid");
PrefHashCalculator calc1_dup("seed1", "deviceid");
PrefHashCalculator calc2("seed2", "deviceid");
PrefHashCalculator calc3("seed1", "deviceid2");
// Two calculators with same seed produce same hash.
ASSERT_EQ(calc1.Calculate("pref_path", &string_value_1),
calc1_dup.Calculate("pref_path", &string_value_1));
ASSERT_EQ(PrefHashCalculator::VALID,
calc1_dup.Validate("pref_path", &string_value_1,
calc1.Calculate("pref_path", &string_value_1)));
// Different seeds, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc2.Calculate("pref_path", &string_value_1));
ASSERT_EQ(PrefHashCalculator::INVALID,
calc2.Validate("pref_path", &string_value_1,
calc1.Calculate("pref_path", &string_value_1)));
// Different device IDs, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc3.Calculate("pref_path", &string_value_1));
// Different values, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc1.Calculate("pref_path", &string_value_2));
// Different paths, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc1.Calculate("pref_path_2", &string_value_1));
// Works for dictionaries.
ASSERT_EQ(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_1));
ASSERT_NE(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_2));
// Empty dictionary children are pruned.
ASSERT_EQ(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_1_equivalent));
// NULL value is supported.
ASSERT_FALSE(calc1.Calculate("pref_path", NULL).empty());
}
// Tests the output against a known value to catch unexpected algorithm changes.
// The test hashes below must NEVER be updated, the serialization algorithm used
// must always be able to generate data that will produce these exact hashes.
TEST(PrefHashCalculatorTest, CatchHashChanges) {
static const char kSeed[] = "0123456789ABCDEF0123456789ABCDEF";
static const char kDeviceId[] = "test_device_id1";
std::unique_ptr<base::Value> null_value = base::Value::CreateNullValue();
std::unique_ptr<base::Value> bool_value(new base::FundamentalValue(false));
std::unique_ptr<base::Value> int_value(
new base::FundamentalValue(1234567890));
std::unique_ptr<base::Value> double_value(
new base::FundamentalValue(123.0987654321));
std::unique_ptr<base::Value> string_value(
new base::StringValue("testing with special chars:\n<>{}:^^@#$\\/"));
// For legacy reasons, we have to support pruning of empty lists/dictionaries
// and nested empty ists/dicts in the hash generation algorithm.
std::unique_ptr<base::DictionaryValue> nested_empty_dict(
new base::DictionaryValue);
nested_empty_dict->Set("a", new base::DictionaryValue);
nested_empty_dict->Set("b", new base::ListValue);
std::unique_ptr<base::ListValue> nested_empty_list(new base::ListValue);
nested_empty_list->Append(base::MakeUnique<base::DictionaryValue>());
nested_empty_list->Append(base::MakeUnique<base::ListValue>());
nested_empty_list->Append(nested_empty_dict->CreateDeepCopy());
// A dictionary with an empty dictionary, an empty list, and nested empty
// dictionaries/lists in it.
std::unique_ptr<base::DictionaryValue> dict_value(new base::DictionaryValue);
dict_value->Set("a", new base::StringValue("foo"));
dict_value->Set("d", new base::ListValue);
dict_value->Set("b", new base::DictionaryValue);
dict_value->Set("c", new base::StringValue("baz"));
dict_value->Set("e", nested_empty_dict.release());
dict_value->Set("f", nested_empty_list.release());
std::unique_ptr<base::ListValue> list_value(new base::ListValue);
list_value->AppendBoolean(true);
list_value->AppendInteger(100);
list_value->AppendDouble(1.0);
ASSERT_EQ(base::Value::Type::NONE, null_value->GetType());
ASSERT_EQ(base::Value::Type::BOOLEAN, bool_value->GetType());
ASSERT_EQ(base::Value::Type::INTEGER, int_value->GetType());
ASSERT_EQ(base::Value::Type::DOUBLE, double_value->GetType());
ASSERT_EQ(base::Value::Type::STRING, string_value->GetType());
ASSERT_EQ(base::Value::Type::DICTIONARY, dict_value->GetType());
ASSERT_EQ(base::Value::Type::LIST, list_value->GetType());
// Test every value type independently. Intentionally omits Type::BINARY which
// isn't even allowed in JSONWriter's input.
static const char kExpectedNullValue[] =
"82A9F3BBC7F9FF84C76B033C854E79EEB162783FA7B3E99FF9372FA8E12C44F7";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", null_value.get(), kExpectedNullValue));
static const char kExpectedBooleanValue[] =
"A520D8F43EA307B0063736DC9358C330539D0A29417580514C8B9862632C4CCC";
EXPECT_EQ(
PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", bool_value.get(), kExpectedBooleanValue));
static const char kExpectedIntegerValue[] =
"8D60DA1F10BF5AA29819D2D66D7CCEF9AABC5DA93C11A0D2BD21078D63D83682";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", int_value.get(), kExpectedIntegerValue));
static const char kExpectedDoubleValue[] =
"C9D94772516125BEEDAE68C109D44BC529E719EE020614E894CC7FB4098C545D";
EXPECT_EQ(
PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", double_value.get(), kExpectedDoubleValue));
static const char kExpectedStringValue[] =
"05ACCBD3B05C45C36CD06190F63EC577112311929D8380E26E5F13182EB68318";
EXPECT_EQ(
PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", string_value.get(), kExpectedStringValue));
static const char kExpectedDictValue[] =
"7A84DCC710D796C771F789A4DA82C952095AA956B6F1667EE42D0A19ECAA3C4A";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", dict_value.get(), kExpectedDictValue));
static const char kExpectedListValue[] =
"8D5A25972DF5AE20D041C780E7CA54E40F614AD53513A0724EE8D62D4F992740";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", list_value.get(), kExpectedListValue));
// Also test every value type together in the same dictionary.
base::DictionaryValue everything;
everything.Set("null", null_value.release());
everything.Set("bool", bool_value.release());
everything.Set("int", int_value.release());
everything.Set("double", double_value.release());
everything.Set("string", string_value.release());
everything.Set("list", list_value.release());
everything.Set("dict", dict_value.release());
static const char kExpectedEverythingValue[] =
"B97D09BE7005693574DCBDD03D8D9E44FB51F4008B73FB56A49A9FA671A1999B";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId)
.Validate("pref.path", &everything, kExpectedEverythingValue));
}
TEST(PrefHashCalculatorTest, TestCompatibilityWithLegacyPrefMetricsServiceId) {
static const char kSeed[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F};
static const char kDeviceId[] =
"D730D9CBD98C734A4FB097A1922275FE9F7E026A4EA1BE0E84";
static const char kExpectedValue[] =
"845EF34663FF8D32BE6707F40258FBA531C2BFC532E3B014AFB3476115C2A9DE";
base::ListValue startup_urls;
startup_urls.Set(0, new base::StringValue("http://www.chromium.org/"));
EXPECT_EQ(
PrefHashCalculator::VALID_SECURE_LEGACY,
PrefHashCalculator(std::string(kSeed, arraysize(kSeed)), kDeviceId)
.Validate("session.startup_urls", &startup_urls, kExpectedValue));
}
|