1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/web_cache/browser/web_cache_manager.h"
#include <string.h>
#include <algorithm>
#include "base/bind.h"
#include "base/compiler_specific.h"
#include "base/location.h"
#include "base/memory/singleton.h"
#include "base/metrics/histogram_macros.h"
#include "base/single_thread_task_runner.h"
#include "base/sys_info.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "components/prefs/pref_registry_simple.h"
#include "components/prefs/pref_service.h"
#include "content/public/browser/notification_service.h"
#include "content/public/browser/notification_types.h"
#include "content/public/browser/render_process_host.h"
#include "services/service_manager/public/cpp/interface_provider.h"
using base::Time;
using base::TimeDelta;
namespace web_cache {
static const int kReviseAllocationDelayMS = 200;
// The default size limit of the in-memory cache is 8 MB
static const int kDefaultMemoryCacheSize = 8 * 1024 * 1024;
namespace {
int GetDefaultCacheSize() {
// Start off with a modest default
int default_cache_size = kDefaultMemoryCacheSize;
// Check how much physical memory the OS has
int mem_size_mb = base::SysInfo::AmountOfPhysicalMemoryMB();
if (mem_size_mb >= 1000) // If we have a GB of memory, set a larger default.
default_cache_size *= 4;
else if (mem_size_mb >= 512) // With 512 MB, set a slightly larger default.
default_cache_size *= 2;
UMA_HISTOGRAM_MEMORY_MB("Cache.MaxCacheSizeMB",
default_cache_size / 1024 / 1024);
return default_cache_size;
}
} // anonymous namespace
// static
WebCacheManager* WebCacheManager::GetInstance() {
return base::Singleton<WebCacheManager>::get();
}
WebCacheManager::WebCacheManager()
: global_size_limit_(GetDefaultGlobalSizeLimit()),
weak_factory_(this) {
registrar_.Add(this, content::NOTIFICATION_RENDERER_PROCESS_CREATED,
content::NotificationService::AllBrowserContextsAndSources());
registrar_.Add(this, content::NOTIFICATION_RENDERER_PROCESS_TERMINATED,
content::NotificationService::AllBrowserContextsAndSources());
}
WebCacheManager::~WebCacheManager() {
}
void WebCacheManager::Add(int renderer_id) {
DCHECK(inactive_renderers_.count(renderer_id) == 0);
// It is tempting to make the following DCHECK here, but it fails when a new
// tab is created as we observe activity from that tab because the
// RenderProcessHost is recreated and adds itself.
//
// DCHECK(active_renderers_.count(renderer_id) == 0);
//
// However, there doesn't seem to be much harm in receiving the calls in this
// order.
active_renderers_.insert(renderer_id);
RendererInfo* stats = &(stats_[renderer_id]);
memset(stats, 0, sizeof(*stats));
stats->access = Time::Now();
content::RenderProcessHost* host =
content::RenderProcessHost::FromID(renderer_id);
if (host) {
mojom::WebCachePtr service;
host->GetRemoteInterfaces()->GetInterface(&service);
web_cache_services_[renderer_id] = std::move(service);
}
// Revise our allocation strategy to account for this new renderer.
ReviseAllocationStrategyLater();
}
void WebCacheManager::Remove(int renderer_id) {
// Erase all knowledge of this renderer
active_renderers_.erase(renderer_id);
inactive_renderers_.erase(renderer_id);
stats_.erase(renderer_id);
web_cache_services_.erase(renderer_id);
// Reallocate the resources used by this renderer
ReviseAllocationStrategyLater();
}
void WebCacheManager::ObserveActivity(int renderer_id) {
StatsMap::iterator item = stats_.find(renderer_id);
if (item == stats_.end())
return; // We might see stats for a renderer that has been destroyed.
// Record activity.
active_renderers_.insert(renderer_id);
item->second.access = Time::Now();
std::set<int>::iterator elmt = inactive_renderers_.find(renderer_id);
if (elmt != inactive_renderers_.end()) {
inactive_renderers_.erase(elmt);
// A renderer that was inactive, just became active. We should make sure
// it is given a fair cache allocation, but we defer this for a bit in
// order to make this function call cheap.
ReviseAllocationStrategyLater();
}
}
void WebCacheManager::ObserveStats(int renderer_id,
uint64_t capacity,
uint64_t size) {
StatsMap::iterator entry = stats_.find(renderer_id);
if (entry == stats_.end())
return; // We might see stats for a renderer that has been destroyed.
// Record the updated stats.
entry->second.capacity = capacity;
entry->second.size = size;
}
void WebCacheManager::SetGlobalSizeLimit(uint64_t bytes) {
global_size_limit_ = bytes;
ReviseAllocationStrategyLater();
}
void WebCacheManager::ClearCache() {
// Tell each renderer process to clear the cache.
ClearRendererCache(active_renderers_, INSTANTLY);
ClearRendererCache(inactive_renderers_, INSTANTLY);
}
void WebCacheManager::ClearCacheOnNavigation() {
// Tell each renderer process to clear the cache when a tab is reloaded or
// the user navigates to a new website.
ClearRendererCache(active_renderers_, ON_NAVIGATION);
ClearRendererCache(inactive_renderers_, ON_NAVIGATION);
}
void WebCacheManager::Observe(int type,
const content::NotificationSource& source,
const content::NotificationDetails& details) {
switch (type) {
case content::NOTIFICATION_RENDERER_PROCESS_CREATED: {
content::RenderProcessHost* process =
content::Source<content::RenderProcessHost>(source).ptr();
Add(process->GetID());
break;
}
case content::NOTIFICATION_RENDERER_PROCESS_TERMINATED: {
content::RenderProcessHost* process =
content::Source<content::RenderProcessHost>(source).ptr();
Remove(process->GetID());
break;
}
default:
NOTREACHED();
break;
}
}
// static
uint64_t WebCacheManager::GetDefaultGlobalSizeLimit() {
return GetDefaultCacheSize();
}
void WebCacheManager::GatherStats(const std::set<int>& renderers,
uint64_t* capacity,
uint64_t* size) {
*capacity = *size = 0;
std::set<int>::const_iterator iter = renderers.begin();
while (iter != renderers.end()) {
StatsMap::iterator elmt = stats_.find(*iter);
if (elmt != stats_.end()) {
*capacity += elmt->second.capacity;
*size += elmt->second.size;
}
++iter;
}
}
// static
uint64_t WebCacheManager::GetSize(AllocationTactic tactic, uint64_t size) {
switch (tactic) {
case DIVIDE_EVENLY:
// We aren't going to reserve any space for existing objects.
return 0;
case KEEP_CURRENT_WITH_HEADROOM:
// We need enough space for our current objects, plus some headroom.
return 3 * GetSize(KEEP_CURRENT, size) / 2;
case KEEP_CURRENT:
// We need enough space to keep our current objects.
return size;
default:
NOTREACHED() << "Unknown cache allocation tactic";
return 0;
}
}
bool WebCacheManager::AttemptTactic(AllocationTactic active_tactic,
uint64_t active_used_size,
AllocationTactic inactive_tactic,
uint64_t inactive_used_size,
AllocationStrategy* strategy) {
DCHECK(strategy);
uint64_t active_size = GetSize(active_tactic, active_used_size);
uint64_t inactive_size = GetSize(inactive_tactic, inactive_used_size);
// Give up if we don't have enough space to use this tactic.
if (global_size_limit_ < active_size + inactive_size)
return false;
// Compute the unreserved space available.
uint64_t total_extra = global_size_limit_ - (active_size + inactive_size);
// The plan for the extra space is to divide it evenly amoung the active
// renderers.
uint64_t shares = active_renderers_.size();
// The inactive renderers get one share of the extra memory to be divided
// among themselves.
uint64_t inactive_extra = 0;
if (!inactive_renderers_.empty()) {
++shares;
inactive_extra = total_extra / shares;
}
// The remaining memory is allocated to the active renderers.
uint64_t active_extra = total_extra - inactive_extra;
// Actually compute the allocations for each renderer.
AddToStrategy(active_renderers_, active_tactic, active_extra, strategy);
AddToStrategy(inactive_renderers_, inactive_tactic, inactive_extra, strategy);
// We succeeded in computing an allocation strategy.
return true;
}
void WebCacheManager::AddToStrategy(const std::set<int>& renderers,
AllocationTactic tactic,
uint64_t extra_bytes_to_allocate,
AllocationStrategy* strategy) {
DCHECK(strategy);
// Nothing to do if there are no renderers. It is common for there to be no
// inactive renderers if there is a single active tab.
if (renderers.empty())
return;
// Divide the extra memory evenly among the renderers.
uint64_t extra_each = extra_bytes_to_allocate / renderers.size();
std::set<int>::const_iterator iter = renderers.begin();
while (iter != renderers.end()) {
uint64_t cache_size = extra_each;
// Add in the space required to implement |tactic|.
StatsMap::iterator elmt = stats_.find(*iter);
if (elmt != stats_.end()) {
cache_size += GetSize(tactic, elmt->second.size);
}
// Record the allocation in our strategy.
strategy->push_back(Allocation(*iter, cache_size));
++iter;
}
}
void WebCacheManager::EnactStrategy(const AllocationStrategy& strategy) {
// Inform each render process of its cache allocation.
AllocationStrategy::const_iterator allocation = strategy.begin();
while (allocation != strategy.end()) {
content::RenderProcessHost* host =
content::RenderProcessHost::FromID(allocation->first);
if (host) {
// This is the capacity this renderer has been allocated.
uint64_t capacity = allocation->second;
// Find the WebCachePtr by renderer process id.
auto it = web_cache_services_.find(allocation->first);
DCHECK(it != web_cache_services_.end());
const mojom::WebCachePtr& service = it->second;
DCHECK(service);
service->SetCacheCapacity(capacity);
}
++allocation;
}
}
void WebCacheManager::ClearCacheForProcess(int render_process_id) {
std::set<int> renderers;
renderers.insert(render_process_id);
ClearRendererCache(renderers, INSTANTLY);
}
void WebCacheManager::ClearRendererCache(
const std::set<int>& renderers,
WebCacheManager::ClearCacheOccasion occasion) {
std::set<int>::const_iterator iter = renderers.begin();
for (; iter != renderers.end(); ++iter) {
content::RenderProcessHost* host =
content::RenderProcessHost::FromID(*iter);
if (host) {
// Find the WebCachePtr by renderer process id.
auto it = web_cache_services_.find(*iter);
DCHECK(it != web_cache_services_.end());
const mojom::WebCachePtr& service = it->second;
DCHECK(service);
service->ClearCache(occasion == ON_NAVIGATION);
}
}
}
void WebCacheManager::ReviseAllocationStrategy() {
DCHECK(stats_.size() <=
active_renderers_.size() + inactive_renderers_.size());
// Check if renderers have gone inactive.
FindInactiveRenderers();
// Gather statistics
uint64_t active_capacity, active_size, inactive_capacity, inactive_size;
GatherStats(active_renderers_, &active_capacity, &active_size);
GatherStats(inactive_renderers_, &inactive_capacity, &inactive_size);
UMA_HISTOGRAM_COUNTS_100("Cache.ActiveTabs", active_renderers_.size());
UMA_HISTOGRAM_COUNTS_100("Cache.InactiveTabs", inactive_renderers_.size());
UMA_HISTOGRAM_MEMORY_MB("Cache.ActiveCapacityMB",
active_capacity / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.ActiveLiveSizeMB", active_size / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.InactiveCapacityMB",
inactive_capacity / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.InactiveLiveSizeMB",
inactive_size / 1024 / 1024);
// Compute an allocation strategy.
//
// We attempt various tactics in order of preference. Our first preference
// is not to evict any objects. If we don't have enough resources, we'll
// first try to evict dead data only. If that fails, we'll just divide the
// resources we have evenly.
//
// We always try to give the active renderers some head room in their
// allocations so they can take memory away from an inactive renderer with
// a large cache allocation.
//
// Notice the early exit will prevent attempting less desirable tactics once
// we've found a workable strategy.
AllocationStrategy strategy;
if ( // Ideally, we'd like to give the active renderers some headroom and
// keep all our current objects.
AttemptTactic(KEEP_CURRENT_WITH_HEADROOM, active_size, KEEP_CURRENT,
inactive_size, &strategy) ||
// Next, we try to keep the current objects in the active renders (with
// some room for new objects) and give whatever is left to the inactive
// renderers.
AttemptTactic(KEEP_CURRENT_WITH_HEADROOM, active_size, DIVIDE_EVENLY,
inactive_size, &strategy) ||
// If we've gotten this far, then we are very tight on memory. Let's try
// to at least keep around the live objects for the active renderers.
AttemptTactic(KEEP_CURRENT, active_size, DIVIDE_EVENLY, inactive_size,
&strategy) ||
// We're basically out of memory. The best we can do is just divide up
// what we have and soldier on.
AttemptTactic(DIVIDE_EVENLY, active_size, DIVIDE_EVENLY, inactive_size,
&strategy)) {
// Having found a workable strategy, we enact it.
EnactStrategy(strategy);
} else {
// DIVIDE_EVENLY / DIVIDE_EVENLY should always succeed.
NOTREACHED() << "Unable to find a cache allocation";
}
}
void WebCacheManager::ReviseAllocationStrategyLater() {
// Ask to be called back in a few milliseconds to actually recompute our
// allocation.
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, base::Bind(&WebCacheManager::ReviseAllocationStrategy,
weak_factory_.GetWeakPtr()),
base::TimeDelta::FromMilliseconds(kReviseAllocationDelayMS));
}
void WebCacheManager::FindInactiveRenderers() {
std::set<int>::const_iterator iter = active_renderers_.begin();
while (iter != active_renderers_.end()) {
StatsMap::iterator elmt = stats_.find(*iter);
DCHECK(elmt != stats_.end());
TimeDelta idle = Time::Now() - elmt->second.access;
if (idle >= TimeDelta::FromMinutes(kRendererInactiveThresholdMinutes)) {
// Moved to inactive status. This invalidates our iterator.
inactive_renderers_.insert(*iter);
active_renderers_.erase(*iter);
iter = active_renderers_.begin();
continue;
}
++iter;
}
}
} // namespace web_cache
|