1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/edk/system/channel.h"
#include <string.h>
#include <algorithm>
#include <limits>
#include <utility>
#include "base/macros.h"
#include "base/memory/aligned_memory.h"
#include "base/process/process_handle.h"
#include "mojo/edk/embedder/platform_handle.h"
#if defined(OS_MACOSX) && !defined(OS_IOS)
#include "base/mac/mach_logging.h"
#elif defined(OS_WIN)
#include "base/win/win_util.h"
#endif
namespace mojo {
namespace edk {
namespace {
static_assert(sizeof(Channel::Message::Header) % kChannelMessageAlignment == 0,
"Invalid Header size.");
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
static_assert(sizeof(Channel::Message::Header) == 8,
"Header must be 8 bytes on ChromeOS and Android");
#endif
} // namespace
const size_t kReadBufferSize = 4096;
const size_t kMaxUnusedReadBufferCapacity = 64 * 1024;
const size_t kMaxChannelMessageSize = 256 * 1024 * 1024;
const size_t kMaxAttachedHandles = 128;
Channel::Message::Message(size_t payload_size,
size_t max_handles,
Header::MessageType message_type)
: max_handles_(max_handles) {
DCHECK_LE(max_handles_, kMaxAttachedHandles);
size_t extra_header_size = 0;
#if defined(OS_WIN)
// On Windows we serialize HANDLEs into the extra header space.
extra_header_size = max_handles_ * sizeof(HandleEntry);
#elif defined(OS_MACOSX) && !defined(OS_IOS)
// On OSX, some of the platform handles may be mach ports, which are
// serialised into the message buffer. Since there could be a mix of fds and
// mach ports, we store the mach ports as an <index, port> pair (of uint32_t),
// so that the original ordering of handles can be re-created.
if (max_handles) {
extra_header_size =
sizeof(MachPortsExtraHeader) + (max_handles * sizeof(MachPortsEntry));
}
#endif
// Pad extra header data to be aliged to |kChannelMessageAlignment| bytes.
if (extra_header_size % kChannelMessageAlignment) {
extra_header_size += kChannelMessageAlignment -
(extra_header_size % kChannelMessageAlignment);
}
DCHECK_EQ(0u, extra_header_size % kChannelMessageAlignment);
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
DCHECK_EQ(0u, extra_header_size);
#endif
size_ = sizeof(Header) + extra_header_size + payload_size;
data_ = static_cast<char*>(base::AlignedAlloc(size_,
kChannelMessageAlignment));
// Only zero out the header and not the payload. Since the payload is going to
// be memcpy'd, zeroing the payload is unnecessary work and a significant
// performance issue when dealing with large messages. Any sanitizer errors
// complaining about an uninitialized read in the payload area should be
// treated as an error and fixed.
memset(data_, 0, sizeof(Header) + extra_header_size);
header_ = reinterpret_cast<Header*>(data_);
DCHECK_LE(size_, std::numeric_limits<uint32_t>::max());
header_->num_bytes = static_cast<uint32_t>(size_);
DCHECK_LE(sizeof(Header) + extra_header_size,
std::numeric_limits<uint16_t>::max());
header_->message_type = message_type;
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
header_->num_handles = static_cast<uint16_t>(max_handles);
#else
header_->num_header_bytes =
static_cast<uint16_t>(sizeof(Header) + extra_header_size);
#endif
if (max_handles_ > 0) {
#if defined(OS_WIN)
handles_ = reinterpret_cast<HandleEntry*>(mutable_extra_header());
// Initialize all handles to invalid values.
for (size_t i = 0; i < max_handles_; ++i)
handles_[i].handle = base::win::HandleToUint32(INVALID_HANDLE_VALUE);
#elif defined(OS_MACOSX) && !defined(OS_IOS)
mach_ports_header_ =
reinterpret_cast<MachPortsExtraHeader*>(mutable_extra_header());
mach_ports_header_->num_ports = 0;
// Initialize all handles to invalid values.
for (size_t i = 0; i < max_handles_; ++i) {
mach_ports_header_->entries[i] =
{0, static_cast<uint32_t>(MACH_PORT_NULL)};
}
#endif
}
}
Channel::Message::~Message() {
base::AlignedFree(data_);
}
// static
Channel::MessagePtr Channel::Message::Deserialize(const void* data,
size_t data_num_bytes) {
if (data_num_bytes < sizeof(Header))
return nullptr;
const Header* header = reinterpret_cast<const Header*>(data);
if (header->num_bytes != data_num_bytes) {
DLOG(ERROR) << "Decoding invalid message: " << header->num_bytes
<< " != " << data_num_bytes;
return nullptr;
}
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
size_t payload_size = data_num_bytes - sizeof(Header);
const char* payload = static_cast<const char*>(data) + sizeof(Header);
#else
if (header->num_bytes < header->num_header_bytes ||
header->num_header_bytes < sizeof(Header)) {
DLOG(ERROR) << "Decoding invalid message: " << header->num_bytes << " < "
<< header->num_header_bytes;
return nullptr;
}
uint32_t extra_header_size = header->num_header_bytes - sizeof(Header);
size_t payload_size = data_num_bytes - header->num_header_bytes;
const char* payload =
static_cast<const char*>(data) + header->num_header_bytes;
#endif // defined(MOJO_EDK_LEGACY_PROTOCOL)
#if defined(OS_WIN)
uint32_t max_handles = extra_header_size / sizeof(HandleEntry);
#elif defined(OS_MACOSX) && !defined(OS_IOS)
if (extra_header_size < sizeof(MachPortsExtraHeader)) {
DLOG(ERROR) << "Decoding invalid message: " << extra_header_size << " < "
<< sizeof(MachPortsExtraHeader);
return nullptr;
}
uint32_t max_handles = (extra_header_size - sizeof(MachPortsExtraHeader)) /
sizeof(MachPortsEntry);
#else
const uint32_t max_handles = 0;
#endif // defined(OS_WIN)
if (header->num_handles > max_handles || max_handles > kMaxAttachedHandles) {
DLOG(ERROR) << "Decoding invalid message:" << header->num_handles
<< " > " << max_handles;
return nullptr;
}
MessagePtr message(new Message(payload_size, max_handles));
DCHECK_EQ(message->data_num_bytes(), data_num_bytes);
// Copy all payload bytes.
if (payload_size)
memcpy(message->mutable_payload(), payload, payload_size);
#if !defined(MOJO_EDK_LEGACY_PROTOCOL)
DCHECK_EQ(message->extra_header_size(), extra_header_size);
DCHECK_EQ(message->header_->num_header_bytes, header->num_header_bytes);
if (message->extra_header_size()) {
// Copy extra header bytes.
memcpy(message->mutable_extra_header(),
static_cast<const char*>(data) + sizeof(Header),
message->extra_header_size());
}
#endif
message->header_->num_handles = header->num_handles;
#if defined(OS_WIN)
ScopedPlatformHandleVectorPtr handles(
new PlatformHandleVector(header->num_handles));
for (size_t i = 0; i < header->num_handles; i++) {
(*handles)[i].handle =
base::win::Uint32ToHandle(message->handles_[i].handle);
}
message->SetHandles(std::move(handles));
#endif
return message;
}
size_t Channel::Message::payload_size() const {
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
return header_->num_bytes - sizeof(Header);
#else
return size_ - header_->num_header_bytes;
#endif
}
#if defined(OS_MACOSX) && !defined(OS_IOS)
bool Channel::Message::has_mach_ports() const {
if (!has_handles())
return false;
for (const auto& handle : (*handle_vector_)) {
if (handle.type == PlatformHandle::Type::MACH ||
handle.type == PlatformHandle::Type::MACH_NAME) {
return true;
}
}
return false;
}
#endif
void Channel::Message::SetHandles(ScopedPlatformHandleVectorPtr new_handles) {
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
// Old semantics for ChromeOS and Android
if (header_->num_handles == 0) {
CHECK(!new_handles || new_handles->size() == 0);
return;
}
CHECK(new_handles && new_handles->size() == header_->num_handles);
std::swap(handle_vector_, new_handles);
#else
if (max_handles_ == 0) {
CHECK(!new_handles || new_handles->size() == 0);
return;
}
CHECK(new_handles && new_handles->size() <= max_handles_);
header_->num_handles = static_cast<uint16_t>(new_handles->size());
std::swap(handle_vector_, new_handles);
#if defined(OS_WIN)
memset(handles_, 0, extra_header_size());
for (size_t i = 0; i < handle_vector_->size(); i++)
handles_[i].handle = base::win::HandleToUint32((*handle_vector_)[i].handle);
#endif // defined(OS_WIN)
#endif // defined(MOJO_EDK_LEGACY_PROTOCOL)
#if defined(OS_MACOSX) && !defined(OS_IOS)
size_t mach_port_index = 0;
if (mach_ports_header_) {
for (size_t i = 0; i < max_handles_; ++i) {
mach_ports_header_->entries[i] =
{0, static_cast<uint32_t>(MACH_PORT_NULL)};
}
for (size_t i = 0; i < handle_vector_->size(); i++) {
if ((*handle_vector_)[i].type == PlatformHandle::Type::MACH ||
(*handle_vector_)[i].type == PlatformHandle::Type::MACH_NAME) {
mach_port_t port = (*handle_vector_)[i].port;
mach_ports_header_->entries[mach_port_index].index = i;
mach_ports_header_->entries[mach_port_index].mach_port = port;
mach_port_index++;
}
}
mach_ports_header_->num_ports = static_cast<uint16_t>(mach_port_index);
}
#endif
}
ScopedPlatformHandleVectorPtr Channel::Message::TakeHandles() {
#if defined(OS_MACOSX) && !defined(OS_IOS)
if (mach_ports_header_) {
for (size_t i = 0; i < max_handles_; ++i) {
mach_ports_header_->entries[i] =
{0, static_cast<uint32_t>(MACH_PORT_NULL)};
}
mach_ports_header_->num_ports = 0;
}
header_->num_handles = 0;
return std::move(handle_vector_);
#else
header_->num_handles = 0;
return std::move(handle_vector_);
#endif
}
ScopedPlatformHandleVectorPtr Channel::Message::TakeHandlesForTransport() {
#if defined(OS_WIN)
// Not necessary on Windows.
NOTREACHED();
return nullptr;
#elif defined(OS_MACOSX) && !defined(OS_IOS)
if (handle_vector_) {
for (auto it = handle_vector_->begin(); it != handle_vector_->end(); ) {
if (it->type == PlatformHandle::Type::MACH ||
it->type == PlatformHandle::Type::MACH_NAME) {
// For Mach port names, we can can just leak them. They're not real
// ports anyways. For real ports, they're leaked because this is a child
// process and the remote process will take ownership.
it = handle_vector_->erase(it);
} else {
++it;
}
}
}
return std::move(handle_vector_);
#else
return std::move(handle_vector_);
#endif
}
#if defined(OS_WIN)
// static
bool Channel::Message::RewriteHandles(base::ProcessHandle from_process,
base::ProcessHandle to_process,
PlatformHandleVector* handles) {
bool success = true;
for (size_t i = 0; i < handles->size(); ++i) {
if (!(*handles)[i].is_valid()) {
DLOG(ERROR) << "Refusing to duplicate invalid handle.";
continue;
}
DCHECK_EQ((*handles)[i].owning_process, from_process);
BOOL result = DuplicateHandle(
from_process, (*handles)[i].handle, to_process,
&(*handles)[i].handle, 0, FALSE,
DUPLICATE_SAME_ACCESS | DUPLICATE_CLOSE_SOURCE);
if (result) {
(*handles)[i].owning_process = to_process;
} else {
success = false;
// If handle duplication fails, the source handle will already be closed
// due to DUPLICATE_CLOSE_SOURCE. Replace the handle in the message with
// an invalid handle.
(*handles)[i].handle = INVALID_HANDLE_VALUE;
(*handles)[i].owning_process = base::GetCurrentProcessHandle();
}
}
return success;
}
#endif
// Helper class for managing a Channel's read buffer allocations. This maintains
// a single contiguous buffer with the layout:
//
// [discarded bytes][occupied bytes][unoccupied bytes]
//
// The Reserve() method ensures that a certain capacity of unoccupied bytes are
// available. It does not claim that capacity and only allocates new capacity
// when strictly necessary.
//
// Claim() marks unoccupied bytes as occupied.
//
// Discard() marks occupied bytes as discarded, signifying that their contents
// can be forgotten or overwritten.
//
// Realign() moves occupied bytes to the front of the buffer so that those
// occupied bytes are properly aligned.
//
// The most common Channel behavior in practice should result in very few
// allocations and copies, as memory is claimed and discarded shortly after
// being reserved, and future reservations will immediately reuse discarded
// memory.
class Channel::ReadBuffer {
public:
ReadBuffer() {
size_ = kReadBufferSize;
data_ = static_cast<char*>(base::AlignedAlloc(size_,
kChannelMessageAlignment));
}
~ReadBuffer() {
DCHECK(data_);
base::AlignedFree(data_);
}
const char* occupied_bytes() const { return data_ + num_discarded_bytes_; }
size_t num_occupied_bytes() const {
return num_occupied_bytes_ - num_discarded_bytes_;
}
// Ensures the ReadBuffer has enough contiguous space allocated to hold
// |num_bytes| more bytes; returns the address of the first available byte.
char* Reserve(size_t num_bytes) {
if (num_occupied_bytes_ + num_bytes > size_) {
size_ = std::max(size_ * 2, num_occupied_bytes_ + num_bytes);
void* new_data = base::AlignedAlloc(size_, kChannelMessageAlignment);
memcpy(new_data, data_, num_occupied_bytes_);
base::AlignedFree(data_);
data_ = static_cast<char*>(new_data);
}
return data_ + num_occupied_bytes_;
}
// Marks the first |num_bytes| unoccupied bytes as occupied.
void Claim(size_t num_bytes) {
DCHECK_LE(num_occupied_bytes_ + num_bytes, size_);
num_occupied_bytes_ += num_bytes;
}
// Marks the first |num_bytes| occupied bytes as discarded. This may result in
// shrinkage of the internal buffer, and it is not safe to assume the result
// of a previous Reserve() call is still valid after this.
void Discard(size_t num_bytes) {
DCHECK_LE(num_discarded_bytes_ + num_bytes, num_occupied_bytes_);
num_discarded_bytes_ += num_bytes;
if (num_discarded_bytes_ == num_occupied_bytes_) {
// We can just reuse the buffer from the beginning in this common case.
num_discarded_bytes_ = 0;
num_occupied_bytes_ = 0;
}
if (num_discarded_bytes_ > kMaxUnusedReadBufferCapacity) {
// In the uncommon case that we have a lot of discarded data at the
// front of the buffer, simply move remaining data to a smaller buffer.
size_t num_preserved_bytes = num_occupied_bytes_ - num_discarded_bytes_;
size_ = std::max(num_preserved_bytes, kReadBufferSize);
char* new_data = static_cast<char*>(
base::AlignedAlloc(size_, kChannelMessageAlignment));
memcpy(new_data, data_ + num_discarded_bytes_, num_preserved_bytes);
base::AlignedFree(data_);
data_ = new_data;
num_discarded_bytes_ = 0;
num_occupied_bytes_ = num_preserved_bytes;
}
if (num_occupied_bytes_ == 0 && size_ > kMaxUnusedReadBufferCapacity) {
// Opportunistically shrink the read buffer back down to a small size if
// it's grown very large. We only do this if there are no remaining
// unconsumed bytes in the buffer to avoid copies in most the common
// cases.
size_ = kMaxUnusedReadBufferCapacity;
base::AlignedFree(data_);
data_ = static_cast<char*>(
base::AlignedAlloc(size_, kChannelMessageAlignment));
}
}
void Realign() {
size_t num_bytes = num_occupied_bytes();
memmove(data_, occupied_bytes(), num_bytes);
num_discarded_bytes_ = 0;
num_occupied_bytes_ = num_bytes;
}
private:
char* data_ = nullptr;
// The total size of the allocated buffer.
size_t size_ = 0;
// The number of discarded bytes at the beginning of the allocated buffer.
size_t num_discarded_bytes_ = 0;
// The total number of occupied bytes, including discarded bytes.
size_t num_occupied_bytes_ = 0;
DISALLOW_COPY_AND_ASSIGN(ReadBuffer);
};
Channel::Channel(Delegate* delegate)
: delegate_(delegate), read_buffer_(new ReadBuffer) {
}
Channel::~Channel() {
}
void Channel::ShutDown() {
delegate_ = nullptr;
ShutDownImpl();
}
char* Channel::GetReadBuffer(size_t *buffer_capacity) {
DCHECK(read_buffer_);
size_t required_capacity = *buffer_capacity;
if (!required_capacity)
required_capacity = kReadBufferSize;
*buffer_capacity = required_capacity;
return read_buffer_->Reserve(required_capacity);
}
bool Channel::OnReadComplete(size_t bytes_read, size_t *next_read_size_hint) {
bool did_dispatch_message = false;
read_buffer_->Claim(bytes_read);
while (read_buffer_->num_occupied_bytes() >= sizeof(Message::Header)) {
// Ensure the occupied data is properly aligned. If it isn't, a SIGBUS could
// happen on architectures that don't allow misaligned words access (i.e.
// anything other than x86). Only re-align when necessary to avoid copies.
if (reinterpret_cast<uintptr_t>(read_buffer_->occupied_bytes()) %
kChannelMessageAlignment != 0)
read_buffer_->Realign();
// We have at least enough data available for a MessageHeader.
const Message::Header* header = reinterpret_cast<const Message::Header*>(
read_buffer_->occupied_bytes());
if (header->num_bytes < sizeof(Message::Header) ||
header->num_bytes > kMaxChannelMessageSize) {
LOG(ERROR) << "Invalid message size: " << header->num_bytes;
return false;
}
if (read_buffer_->num_occupied_bytes() < header->num_bytes) {
// Not enough data available to read the full message. Hint to the
// implementation that it should try reading the full size of the message.
*next_read_size_hint =
header->num_bytes - read_buffer_->num_occupied_bytes();
return true;
}
#if defined(MOJO_EDK_LEGACY_PROTOCOL)
size_t extra_header_size = 0;
const void* extra_header = nullptr;
size_t payload_size = header->num_bytes - sizeof(Message::Header);
void* payload = payload_size ? const_cast<Message::Header*>(&header[1])
: nullptr;
#else
if (header->num_header_bytes < sizeof(Message::Header) ||
header->num_header_bytes > header->num_bytes) {
LOG(ERROR) << "Invalid message header size: " << header->num_header_bytes;
return false;
}
size_t extra_header_size =
header->num_header_bytes - sizeof(Message::Header);
const void* extra_header = extra_header_size ? header + 1 : nullptr;
size_t payload_size = header->num_bytes - header->num_header_bytes;
void* payload =
payload_size ? reinterpret_cast<Message::Header*>(
const_cast<char*>(read_buffer_->occupied_bytes()) +
header->num_header_bytes)
: nullptr;
#endif // defined(MOJO_EDK_LEGACY_PROTOCOL)
ScopedPlatformHandleVectorPtr handles;
if (header->num_handles > 0) {
if (!GetReadPlatformHandles(header->num_handles, extra_header,
extra_header_size, &handles)) {
return false;
}
if (!handles) {
// Not enough handles available for this message.
break;
}
}
// We've got a complete message! Dispatch it and try another.
if (header->message_type != Message::Header::MessageType::NORMAL) {
if (!OnControlMessage(header->message_type, payload, payload_size,
std::move(handles))) {
return false;
}
did_dispatch_message = true;
} else if (delegate_) {
delegate_->OnChannelMessage(payload, payload_size, std::move(handles));
did_dispatch_message = true;
}
read_buffer_->Discard(header->num_bytes);
}
*next_read_size_hint = did_dispatch_message ? 0 : kReadBufferSize;
return true;
}
void Channel::OnError() {
if (delegate_)
delegate_->OnChannelError();
}
bool Channel::OnControlMessage(Message::Header::MessageType message_type,
const void* payload,
size_t payload_size,
ScopedPlatformHandleVectorPtr handles) {
return false;
}
} // namespace edk
} // namespace mojo
|